Blender V2.61 - r43446

AnimationImporter.cpp

Go to the documentation of this file.
00001 /*
00002  * ***** BEGIN GPL LICENSE BLOCK *****
00003  *
00004  * This program is free software; you can redistribute it and/or
00005  * modify it under the terms of the GNU General Public License
00006  * as published by the Free Software Foundation; either version 2
00007  * of the License, or (at your option) any later version.
00008  *
00009  * This program is distributed in the hope that it will be useful,
00010  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00011  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00012  * GNU General Public License for more details.
00013  *
00014  * You should have received a copy of the GNU General Public License
00015  * along with this program; if not, write to the Free Software Foundation,
00016  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
00017  *
00018  * Contributor(s): Chingiz Dyussenov, Arystanbek Dyussenov, Nathan Letwory, Sukhitha Jayathilake.
00019  *
00020  * ***** END GPL LICENSE BLOCK *****
00021  */
00022 
00027 #include <stddef.h>
00028 
00029 /* COLLADABU_ASSERT, may be able to remove later */
00030 #include "COLLADABUPlatform.h"
00031 
00032 #include "DNA_armature_types.h"
00033 
00034 #include "ED_keyframing.h"
00035 
00036 #include "BLI_listbase.h"
00037 #include "BLI_math.h"
00038 #include "BLI_path_util.h"
00039 #include "BLI_string.h"
00040 
00041 #include "BKE_action.h"
00042 #include "BKE_armature.h"
00043 #include "BKE_fcurve.h"
00044 #include "BKE_object.h"
00045 
00046 #include "MEM_guardedalloc.h"
00047 
00048 #include "collada_utils.h"
00049 #include "AnimationImporter.h"
00050 #include "ArmatureImporter.h"
00051 #include "MaterialExporter.h"
00052 
00053 #include <algorithm>
00054 
00055 // first try node name, if not available (since is optional), fall back to original id
00056 template<class T>
00057 static const char *bc_get_joint_name(T *node)
00058 {
00059     const std::string& id = node->getName();
00060     return id.size() ? id.c_str() : node->getOriginalId().c_str();
00061 }
00062 
00063 FCurve *AnimationImporter::create_fcurve(int array_index, const char *rna_path)
00064 {
00065     FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve");
00066     fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED);
00067     fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
00068     fcu->array_index = array_index;
00069     return fcu;
00070 }
00071     
00072 void AnimationImporter::create_bezt(FCurve *fcu, float frame, float output)
00073 {
00074     BezTriple bez;
00075     memset(&bez, 0, sizeof(BezTriple));
00076     bez.vec[1][0] = frame;
00077     bez.vec[1][1] = output;
00078     bez.ipo = U.ipo_new; /* use default interpolation mode here... */
00079     bez.f1 = bez.f2 = bez.f3 = SELECT;
00080     bez.h1 = bez.h2 = HD_AUTO;
00081     insert_bezt_fcurve(fcu, &bez, 0);
00082     calchandles_fcurve(fcu);
00083 }
00084 
00085 // create one or several fcurves depending on the number of parameters being animated
00086 void AnimationImporter::animation_to_fcurves(COLLADAFW::AnimationCurve *curve)
00087 {
00088     COLLADAFW::FloatOrDoubleArray& input = curve->getInputValues();
00089     COLLADAFW::FloatOrDoubleArray& output = curve->getOutputValues();
00090 
00091     float fps = (float)FPS;
00092     size_t dim = curve->getOutDimension();
00093     unsigned int i;
00094 
00095     std::vector<FCurve*>& fcurves = curve_map[curve->getUniqueId()];
00096 
00097     switch (dim) {
00098     case 1: // X, Y, Z or angle
00099     case 3: // XYZ
00100     case 4:
00101     case 16: // matrix
00102         {
00103             for (i = 0; i < dim; i++ ) {
00104                 FCurve *fcu = (FCurve*)MEM_callocN(sizeof(FCurve), "FCurve");
00105 
00106                 fcu->flag = (FCURVE_VISIBLE|FCURVE_AUTO_HANDLES|FCURVE_SELECTED);
00107                 // fcu->rna_path = BLI_strdupn(path, strlen(path));
00108                 fcu->array_index = 0;
00109                 fcu->totvert = curve->getKeyCount();
00110 
00111                 // create beztriple for each key
00112                 for (unsigned int j = 0; j < curve->getKeyCount(); j++) {
00113                     BezTriple bez;
00114                     memset(&bez, 0, sizeof(BezTriple));
00115 
00116 
00117                     // input, output
00118                     bez.vec[1][0] = bc_get_float_value(input, j) * fps; 
00119                     bez.vec[1][1] = bc_get_float_value(output, j * dim + i);
00120 
00121 
00122                     if( curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER ||
00123                         curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_STEP) 
00124                     {
00125                         COLLADAFW::FloatOrDoubleArray& intan = curve->getInTangentValues();
00126                         COLLADAFW::FloatOrDoubleArray& outtan = curve->getOutTangentValues();
00127 
00128                         // intangent
00129                         bez.vec[0][0] = bc_get_float_value(intan, (j * 2 * dim ) + (2 * i)) * fps;
00130                         bez.vec[0][1] = bc_get_float_value(intan, (j * 2 * dim )+ (2 * i) + 1);
00131 
00132                         // outtangent
00133                         bez.vec[2][0] = bc_get_float_value(outtan, (j * 2 * dim ) + (2 * i)) * fps;
00134                         bez.vec[2][1] = bc_get_float_value(outtan, (j * 2 * dim )+ (2 * i) + 1);
00135                         if(curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER) 
00136                             bez.ipo = BEZT_IPO_BEZ;
00137                         else 
00138                             bez.ipo = BEZT_IPO_CONST;
00139                         //bez.h1 = bez.h2 = HD_AUTO;    
00140                     }
00141                     else 
00142                     {
00143                         bez.h1 = bez.h2 = HD_AUTO; 
00144                         bez.ipo = BEZT_IPO_LIN;
00145                     }
00146                     // bez.ipo = U.ipo_new; /* use default interpolation mode here... */
00147                     bez.f1 = bez.f2 = bez.f3 = SELECT;
00148 
00149                     insert_bezt_fcurve(fcu, &bez, 0);
00150                 }
00151 
00152                 calchandles_fcurve(fcu);
00153 
00154                 fcurves.push_back(fcu);
00155             }
00156         }
00157         break;
00158     default:
00159         fprintf(stderr, "Output dimension of %d is not yet supported (animation id = %s)\n", (int)dim, curve->getOriginalId().c_str());
00160     }
00161 
00162     for (std::vector<FCurve*>::iterator it = fcurves.begin(); it != fcurves.end(); it++)
00163         unused_curves.push_back(*it);
00164 }
00165 
00166 
00167 void AnimationImporter::fcurve_deg_to_rad(FCurve *cu)
00168 {
00169     for (unsigned int i = 0; i < cu->totvert; i++) {
00170         // TODO convert handles too
00171         cu->bezt[i].vec[1][1] *= DEG2RADF(1.0f);
00172         cu->bezt[i].vec[0][1] *= DEG2RADF(1.0f);
00173         cu->bezt[i].vec[2][1] *= DEG2RADF(1.0f);
00174     }
00175 }
00176 
00177 
00178 void AnimationImporter::add_fcurves_to_object(Object *ob, std::vector<FCurve*>& curves, char *rna_path, int array_index, Animation *animated)
00179 {
00180     bAction *act;
00181     
00182     if (!ob->adt || !ob->adt->action) act = verify_adt_action((ID*)&ob->id, 1);
00183     else act = ob->adt->action;
00184     
00185     std::vector<FCurve*>::iterator it;
00186     int i;
00187 
00188 #if 0
00189     char *p = strstr(rna_path, "rotation_euler");
00190     bool is_rotation = p && *(p + strlen("rotation_euler")) == '\0';
00191 
00192     // convert degrees to radians for rotation
00193     if (is_rotation)
00194         fcurve_deg_to_rad(fcu);
00195 #endif
00196     
00197     for (it = curves.begin(), i = 0; it != curves.end(); it++, i++) {
00198         FCurve *fcu = *it;
00199         fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
00200         
00201         if (array_index == -1) fcu->array_index = i;
00202         else fcu->array_index = array_index;
00203     
00204         if (ob->type == OB_ARMATURE) {
00205             bActionGroup *grp = NULL;
00206             const char *bone_name = bc_get_joint_name(animated->node);
00207             
00208             if (bone_name) {
00209                 /* try to find group */
00210                 grp = action_groups_find_named(act, bone_name);
00211                 
00212                 /* no matching groups, so add one */
00213                 if (grp == NULL) {
00214                     /* Add a new group, and make it active */
00215                     grp = (bActionGroup*)MEM_callocN(sizeof(bActionGroup), "bActionGroup");
00216                     
00217                     grp->flag = AGRP_SELECTED;
00218                     BLI_strncpy(grp->name, bone_name, sizeof(grp->name));
00219                     
00220                     BLI_addtail(&act->groups, grp);
00221                     BLI_uniquename(&act->groups, grp, "Group", '.', offsetof(bActionGroup, name), 64);
00222                 }
00223                 
00224                 /* add F-Curve to group */
00225                 action_groups_add_channel(act, grp, fcu);
00226                 
00227             }
00228 #if 0
00229             if (is_rotation) {
00230                 fcurves_actionGroup_map[grp].push_back(fcu);
00231             }
00232 #endif
00233         }
00234         else {
00235             BLI_addtail(&act->curves, fcu);
00236         }
00237 
00238         // curve is used, so remove it from unused_curves
00239         unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu), unused_curves.end());
00240     }
00241 }
00242 
00243 AnimationImporter::AnimationImporter(UnitConverter *conv, ArmatureImporter *arm, Scene *scene) :
00244         TransformReader(conv), armature_importer(arm), scene(scene) { }
00245 
00246 AnimationImporter::~AnimationImporter()
00247 {
00248     // free unused FCurves
00249     for (std::vector<FCurve*>::iterator it = unused_curves.begin(); it != unused_curves.end(); it++)
00250         free_fcurve(*it);
00251 
00252     if (unused_curves.size())
00253         fprintf(stderr, "removed %d unused curves\n", (int)unused_curves.size());
00254 }
00255 
00256 bool AnimationImporter::write_animation(const COLLADAFW::Animation* anim) 
00257 {
00258     if (anim->getAnimationType() == COLLADAFW::Animation::ANIMATION_CURVE) {
00259         COLLADAFW::AnimationCurve *curve = (COLLADAFW::AnimationCurve*)anim;
00260         
00261         // XXX Don't know if it's necessary
00262         // Should we check outPhysicalDimension?
00263         if (curve->getInPhysicalDimension() != COLLADAFW::PHYSICAL_DIMENSION_TIME) {
00264             fprintf(stderr, "Inputs physical dimension is not time. \n");
00265             return true;
00266         }
00267 
00268         // a curve can have mixed interpolation type,
00269         // in this case curve->getInterpolationTypes returns a list of interpolation types per key
00270         COLLADAFW::AnimationCurve::InterpolationType interp = curve->getInterpolationType();
00271 
00272         if (interp != COLLADAFW::AnimationCurve::INTERPOLATION_MIXED) {
00273             switch (interp) {
00274             case COLLADAFW::AnimationCurve::INTERPOLATION_LINEAR:
00275             case COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER:
00276             case COLLADAFW::AnimationCurve::INTERPOLATION_STEP:
00277                 animation_to_fcurves(curve);
00278                 break;
00279             default:
00280                 // TODO there're also CARDINAL, HERMITE, BSPLINE and STEP types
00281                 fprintf(stderr, "CARDINAL, HERMITE and BSPLINE anim interpolation types not supported yet.\n");
00282                 break;
00283             }
00284         }
00285         else {
00286             // not supported yet
00287             fprintf(stderr, "MIXED anim interpolation type is not supported yet.\n");
00288         }
00289     }
00290     else {
00291         fprintf(stderr, "FORMULA animation type is not supported yet.\n");
00292     }
00293     
00294     return true;
00295 }
00296     
00297 // called on post-process stage after writeVisualScenes
00298 bool AnimationImporter::write_animation_list(const COLLADAFW::AnimationList* animlist) 
00299 {
00300     const COLLADAFW::UniqueId& animlist_id = animlist->getUniqueId();
00301 
00302     animlist_map[animlist_id] = animlist;
00303 
00304 #if 0
00305 
00306     // should not happen
00307     if (uid_animated_map.find(animlist_id) == uid_animated_map.end()) {
00308         return true;
00309     }
00310 
00311     // for bones rna_path is like: pose.bones["bone-name"].rotation
00312 
00313 
00314 #endif
00315 
00316     return true;
00317 }
00318 
00319 // \todo refactor read_node_transform to not automatically apply anything,
00320 // but rather return the transform matrix, so caller can do with it what is
00321 // necessary. Same for \ref get_node_mat
00322 void AnimationImporter::read_node_transform(COLLADAFW::Node *node, Object *ob)
00323 {
00324     float mat[4][4];
00325     TransformReader::get_node_mat(mat, node, &uid_animated_map, ob);
00326     if (ob) {
00327         copy_m4_m4(ob->obmat, mat);
00328         object_apply_mat4(ob, ob->obmat, 0, 0);
00329     }
00330 }
00331 
00332 #if 0
00333 virtual void AnimationImporter::change_eul_to_quat(Object *ob, bAction *act)
00334 {
00335     bActionGroup *grp;
00336     int i;
00337     
00338     for (grp = (bActionGroup*)act->groups.first; grp; grp = grp->next) {
00339 
00340         FCurve *eulcu[3] = {NULL, NULL, NULL};
00341         
00342         if (fcurves_actionGroup_map.find(grp) == fcurves_actionGroup_map.end())
00343             continue;
00344 
00345         std::vector<FCurve*> &rot_fcurves = fcurves_actionGroup_map[grp];
00346         
00347         if (rot_fcurves.size() > 3) continue;
00348 
00349         for (i = 0; i < rot_fcurves.size(); i++)
00350             eulcu[rot_fcurves[i]->array_index] = rot_fcurves[i];
00351 
00352         char joint_path[100];
00353         char rna_path[100];
00354 
00355         BLI_snprintf(joint_path, sizeof(joint_path), "pose.bones[\"%s\"]", grp->name);
00356         BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_quaternion", joint_path);
00357 
00358         FCurve *quatcu[4] = {
00359             create_fcurve(0, rna_path),
00360             create_fcurve(1, rna_path),
00361             create_fcurve(2, rna_path),
00362             create_fcurve(3, rna_path)
00363         };
00364 
00365         bPoseChannel *chan = get_pose_channel(ob->pose, grp->name);
00366 
00367         float m4[4][4], irest[3][3];
00368         invert_m4_m4(m4, chan->bone->arm_mat);
00369         copy_m3_m4(irest, m4);
00370 
00371         for (i = 0; i < 3; i++) {
00372 
00373             FCurve *cu = eulcu[i];
00374 
00375             if (!cu) continue;
00376 
00377             for (int j = 0; j < cu->totvert; j++) {
00378                 float frame = cu->bezt[j].vec[1][0];
00379 
00380                 float eul[3] = {
00381                     eulcu[0] ? evaluate_fcurve(eulcu[0], frame) : 0.0f,
00382                     eulcu[1] ? evaluate_fcurve(eulcu[1], frame) : 0.0f,
00383                     eulcu[2] ? evaluate_fcurve(eulcu[2], frame) : 0.0f
00384                 };
00385 
00386                 // make eul relative to bone rest pose
00387                 float rot[3][3], rel[3][3], quat[4];
00388 
00389                 /*eul_to_mat3(rot, eul);
00390 
00391                 mul_m3_m3m3(rel, irest, rot);
00392 
00393                 mat3_to_quat(quat, rel);
00394                 */
00395 
00396                 eul_to_quat(quat, eul);
00397 
00398                 for (int k = 0; k < 4; k++)
00399                     create_bezt(quatcu[k], frame, quat[k]);
00400             }
00401         }
00402 
00403         // now replace old Euler curves
00404 
00405         for (i = 0; i < 3; i++) {
00406             if (!eulcu[i]) continue;
00407 
00408             action_groups_remove_channel(act, eulcu[i]);
00409             free_fcurve(eulcu[i]);
00410         }
00411 
00412         chan->rotmode = ROT_MODE_QUAT;
00413 
00414         for (i = 0; i < 4; i++)
00415             action_groups_add_channel(act, grp, quatcu[i]);
00416     }
00417 
00418     bPoseChannel *pchan;
00419     for (pchan = (bPoseChannel*)ob->pose->chanbase.first; pchan; pchan = pchan->next) {
00420         pchan->rotmode = ROT_MODE_QUAT;
00421     }
00422 }
00423 #endif
00424 
00425 
00426 //sets the rna_path and array index to curve
00427 void AnimationImporter::modify_fcurve(std::vector<FCurve*>* curves , const char* rna_path , int array_index )
00428 {
00429     std::vector<FCurve*>::iterator it;
00430     int i;
00431     for (it = curves->begin(), i = 0; it != curves->end(); it++, i++) {
00432         FCurve *fcu = *it;
00433         fcu->rna_path = BLI_strdup(rna_path);
00434         
00435         if (array_index == -1) fcu->array_index = i;
00436         else fcu->array_index = array_index;
00437 
00438         unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu), unused_curves.end());
00439     }
00440 }
00441 
00442 void AnimationImporter::find_frames( std::vector<float>* frames , std::vector<FCurve*>* curves)
00443 {
00444     std::vector<FCurve*>::iterator iter;
00445     for (iter = curves->begin(); iter != curves->end(); iter++) {
00446         FCurve *fcu = *iter;
00447 
00448         for (unsigned int k = 0; k < fcu->totvert; k++) {
00449             //get frame value from bezTriple
00450             float fra = fcu->bezt[k].vec[1][0];
00451             //if frame already not added add frame to frames
00452             if (std::find(frames->begin(), frames->end(), fra) == frames->end())
00453                 frames->push_back(fra);
00454 
00455         }
00456     }
00457 }
00458 
00459 //creates the rna_paths and array indices of fcurves from animations using transformation and bound animation class of each animation.
00460 void AnimationImporter:: Assign_transform_animations(COLLADAFW::Transformation * transform , 
00461                                                      const COLLADAFW::AnimationList::AnimationBinding * binding,
00462                                                      std::vector<FCurve*>* curves, bool is_joint, char * joint_path)
00463 {
00464     COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
00465     bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
00466     bool is_rotation = tm_type  == COLLADAFW::Transformation::ROTATE;
00467 
00468     //to check if the no of curves are valid
00469     bool xyz = ((tm_type == COLLADAFW::Transformation::TRANSLATE ||tm_type  == COLLADAFW::Transformation::SCALE) && binding->animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
00470 
00471 
00472     if (!((!xyz && curves->size() == 1) || (xyz && curves->size() == 3) || is_matrix)) {
00473         fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, (int)curves->size());
00474         return;
00475     }
00476 
00477     char rna_path[100];
00478 
00479     switch (tm_type) {
00480         case COLLADAFW::Transformation::TRANSLATE:
00481         case COLLADAFW::Transformation::SCALE:
00482             {
00483                 bool loc = tm_type == COLLADAFW::Transformation::TRANSLATE;
00484                 if (is_joint)
00485                     BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, loc ? "location" : "scale");
00486                 else
00487                     BLI_strncpy(rna_path, loc ? "location" : "scale", sizeof(rna_path));
00488 
00489                 switch (binding->animationClass) {
00490         case COLLADAFW::AnimationList::POSITION_X:
00491             modify_fcurve(curves, rna_path, 0 );
00492             break;
00493         case COLLADAFW::AnimationList::POSITION_Y:
00494             modify_fcurve(curves, rna_path, 1 );
00495             break;
00496         case COLLADAFW::AnimationList::POSITION_Z:
00497             modify_fcurve(curves, rna_path, 2 );
00498             break;
00499         case COLLADAFW::AnimationList::POSITION_XYZ:
00500             modify_fcurve(curves, rna_path, -1 );
00501             break;
00502         default:
00503             fprintf(stderr, "AnimationClass %d is not supported for %s.\n",
00504                 binding->animationClass, loc ? "TRANSLATE" : "SCALE");
00505                 }
00506                 break;
00507             }
00508 
00509 
00510         case COLLADAFW::Transformation::ROTATE:
00511             {
00512                 if (is_joint)
00513                     BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_euler", joint_path);
00514                 else
00515                     BLI_strncpy(rna_path, "rotation_euler", sizeof(rna_path));
00516                 std::vector<FCurve*>::iterator iter;
00517                 for (iter = curves->begin(); iter != curves->end(); iter++) {
00518                     FCurve* fcu = *iter;
00519 
00520                     //if transform is rotation the fcurves values must be turned in to radian.
00521                     if (is_rotation)
00522                         fcurve_deg_to_rad(fcu);      
00523                 }                   
00524                 COLLADAFW::Rotate* rot = (COLLADAFW::Rotate*)transform;
00525                 COLLADABU::Math::Vector3& axis = rot->getRotationAxis();
00526 
00527                 switch (binding->animationClass) {
00528         case COLLADAFW::AnimationList::ANGLE:
00529             if (COLLADABU::Math::Vector3::UNIT_X == axis) {
00530                 modify_fcurve(curves, rna_path, 0 );
00531             }
00532             else if (COLLADABU::Math::Vector3::UNIT_Y == axis) {
00533                 modify_fcurve(curves, rna_path, 1 );
00534             }
00535             else if (COLLADABU::Math::Vector3::UNIT_Z == axis) {
00536                 modify_fcurve(curves, rna_path, 2 );
00537             }
00538             break;
00539         case COLLADAFW::AnimationList::AXISANGLE:
00540             // TODO convert axis-angle to quat? or XYZ?
00541         default:
00542             fprintf(stderr, "AnimationClass %d is not supported for ROTATE transformation.\n",
00543                 binding->animationClass);
00544                 }
00545                 break;
00546             }
00547 
00548         case COLLADAFW::Transformation::MATRIX:
00549             /*{
00550             COLLADAFW::Matrix* mat = (COLLADAFW::Matrix*)transform;
00551             COLLADABU::Math::Matrix4 mat4 = mat->getMatrix();
00552             switch (binding->animationClass) {
00553             case COLLADAFW::AnimationList::TRANSFORM:
00554 
00555             }
00556             }*/
00557             break;
00558         case COLLADAFW::Transformation::SKEW:
00559         case COLLADAFW::Transformation::LOOKAT:
00560             fprintf(stderr, "Animation of SKEW and LOOKAT transformations is not supported yet.\n");
00561             break;
00562     }
00563 
00564 }
00565 
00566 //creates the rna_paths and array indices of fcurves from animations using color and bound animation class of each animation.
00567 void AnimationImporter:: Assign_color_animations(const COLLADAFW::UniqueId& listid, ListBase *AnimCurves ,const char * anim_type)
00568 {
00569     char rna_path[100];
00570     BLI_strncpy(rna_path,anim_type, sizeof(rna_path));
00571 
00572     const COLLADAFW::AnimationList *animlist = animlist_map[listid];
00573     const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
00574     //all the curves belonging to the current binding
00575     std::vector<FCurve*> animcurves;
00576     for (unsigned int j = 0; j < bindings.getCount(); j++) {
00577         animcurves = curve_map[bindings[j].animation];
00578 
00579         switch (bindings[j].animationClass) {
00580         case COLLADAFW::AnimationList::COLOR_R:
00581             modify_fcurve(&animcurves, rna_path, 0 );
00582             break;
00583         case COLLADAFW::AnimationList::COLOR_G:
00584             modify_fcurve(&animcurves, rna_path, 1 );
00585             break;
00586         case COLLADAFW::AnimationList::COLOR_B:
00587             modify_fcurve(&animcurves, rna_path, 2 );
00588             break;
00589         case COLLADAFW::AnimationList::COLOR_RGB:
00590         case COLLADAFW::AnimationList::COLOR_RGBA: // to do-> set intensity
00591             modify_fcurve(&animcurves, rna_path, -1 );
00592             break;
00593 
00594         default:
00595             fprintf(stderr, "AnimationClass %d is not supported for %s.\n",
00596                 bindings[j].animationClass, "COLOR" );
00597         }
00598 
00599         std::vector<FCurve*>::iterator iter;
00600         //Add the curves of the current animation to the object
00601         for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
00602             FCurve * fcu = *iter;
00603             BLI_addtail(AnimCurves, fcu);   
00604         }
00605     }
00606 
00607 
00608 }
00609 
00610 void AnimationImporter:: Assign_float_animations(const COLLADAFW::UniqueId& listid, ListBase *AnimCurves, const char * anim_type)
00611 {
00612     char rna_path[100];
00613     if (animlist_map.find(listid) == animlist_map.end()) return ;
00614     else 
00615     {
00616         //anim_type has animations
00617         const COLLADAFW::AnimationList *animlist = animlist_map[listid];
00618         const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
00619         //all the curves belonging to the current binding
00620         std::vector<FCurve*> animcurves;
00621         for (unsigned int j = 0; j < bindings.getCount(); j++) {
00622             animcurves = curve_map[bindings[j].animation];
00623 
00624             BLI_strncpy(rna_path, anim_type , sizeof(rna_path));
00625             modify_fcurve(&animcurves, rna_path, 0 );
00626             std::vector<FCurve*>::iterator iter;
00627             //Add the curves of the current animation to the object
00628             for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
00629                 FCurve * fcu = *iter;
00630                 BLI_addtail(AnimCurves, fcu);
00631             }
00632         }
00633     }
00634     
00635 }
00636 
00637 void AnimationImporter::apply_matrix_curves( Object * ob, std::vector<FCurve*>& animcurves, COLLADAFW::Node* root ,COLLADAFW::Node* node, 
00638                                                     COLLADAFW::Transformation * tm )
00639 {
00640     bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
00641     const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
00642     char joint_path[200];
00643     if ( is_joint ) 
00644         armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
00645 
00646     std::vector<float> frames;
00647     find_frames(&frames, &animcurves);
00648 
00649     float irest_dae[4][4];
00650     float rest[4][4], irest[4][4];
00651 
00652     if (is_joint) {
00653         get_joint_rest_mat(irest_dae, root, node);
00654         invert_m4(irest_dae);
00655 
00656         Bone *bone = get_named_bone((bArmature*)ob->data, bone_name);
00657         if (!bone) {
00658             fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
00659             return;
00660         }
00661 
00662         unit_m4(rest);
00663         copy_m4_m4(rest, bone->arm_mat);
00664         invert_m4_m4(irest, rest);
00665     }
00666     // new curves to assign matrix transform animation
00667     FCurve *newcu[10]; // if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale
00668     unsigned int totcu = 10 ;
00669     const char *tm_str = NULL;
00670     char rna_path[200];
00671     for (int i = 0; i < totcu; i++) {
00672 
00673         int axis = i;
00674 
00675         if (i < 4) {
00676             tm_str = "rotation_quaternion";
00677             axis = i;
00678         }
00679         else if (i < 7) {
00680             tm_str = "location";
00681             axis = i - 4;
00682         }
00683         else {
00684             tm_str = "scale";
00685             axis = i - 7;
00686         }
00687 
00688 
00689         if (is_joint)
00690             BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
00691         else
00692             BLI_strncpy(rna_path, tm_str, sizeof(rna_path));
00693         newcu[i] = create_fcurve(axis, rna_path);
00694         newcu[i]->totvert = frames.size();
00695     }
00696 
00697     if (frames.size() == 0)
00698         return;
00699 
00700     std::sort(frames.begin(), frames.end());
00701 
00702     std::vector<float>::iterator it;
00703 
00704     // sample values at each frame
00705     for (it = frames.begin(); it != frames.end(); it++) {
00706         float fra = *it;
00707 
00708         float mat[4][4];
00709         float matfra[4][4];
00710 
00711         unit_m4(matfra);
00712 
00713         // calc object-space mat
00714         evaluate_transform_at_frame(matfra, node, fra);
00715 
00716 
00717         // for joints, we need a special matrix
00718         if (is_joint) {
00719             // special matrix: iR * M * iR_dae * R
00720             // where R, iR are bone rest and inverse rest mats in world space (Blender bones),
00721             // iR_dae is joint inverse rest matrix (DAE) and M is an evaluated joint world-space matrix (DAE)
00722             float temp[4][4], par[4][4];
00723 
00724             // calc M
00725             calc_joint_parent_mat_rest(par, NULL, root, node);
00726             mult_m4_m4m4(temp, par, matfra);
00727 
00728             // evaluate_joint_world_transform_at_frame(temp, NULL, , node, fra);
00729 
00730             // calc special matrix
00731             mul_serie_m4(mat, irest, temp, irest_dae, rest, NULL, NULL, NULL, NULL);
00732         }
00733         else {
00734             copy_m4_m4(mat, matfra);
00735         }
00736 
00737         float  rot[4], loc[3], scale[3];
00738 
00739         mat4_to_quat(rot, mat);
00740         /*for ( int i = 0 ; i < 4  ;  i ++ )
00741         {
00742         rot[i] = RAD2DEGF(rot[i]);
00743         }*/
00744         copy_v3_v3(loc, mat[3]);
00745         mat4_to_size(scale, mat);
00746 
00747         // add keys
00748         for (int i = 0; i < totcu; i++) {
00749             if (i < 4)
00750                 add_bezt(newcu[i], fra, rot[i]);
00751             else if (i < 7)
00752                 add_bezt(newcu[i], fra, loc[i - 4]);
00753             else
00754                 add_bezt(newcu[i], fra, scale[i - 7]);
00755         }
00756     }
00757     verify_adt_action((ID*)&ob->id, 1);
00758 
00759     ListBase *curves = &ob->adt->action->curves;
00760 
00761     // add curves
00762     for (int i= 0; i < totcu; i++) {
00763         if (is_joint)
00764             add_bone_fcurve(ob, node, newcu[i]);
00765         else
00766             BLI_addtail(curves, newcu[i]);
00767     }
00768 
00769     if (is_joint) {
00770         bPoseChannel *chan = get_pose_channel(ob->pose, bone_name);
00771         chan->rotmode = ROT_MODE_QUAT;
00772     }
00773     else {
00774         ob->rotmode = ROT_MODE_QUAT;
00775     }
00776 
00777     return;
00778 
00779 }
00780 
00781 void AnimationImporter::translate_Animations ( COLLADAFW::Node * node , 
00782                                                    std::map<COLLADAFW::UniqueId, COLLADAFW::Node*>& root_map,
00783                                                    std::map<COLLADAFW::UniqueId, Object*>& object_map,
00784                                                    std::map<COLLADAFW::UniqueId, const COLLADAFW::Object*> FW_object_map)
00785 {
00786     AnimationImporter::AnimMix* animType = get_animation_type(node, FW_object_map );
00787 
00788     bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
00789     COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ? node : root_map[node->getUniqueId()];
00790     Object *ob = is_joint ? armature_importer->get_armature_for_joint(root) : object_map[node->getUniqueId()];
00791     if (!ob)
00792     {
00793         fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
00794         return;
00795     }
00796 
00797     bAction * act;
00798 
00799     if ( (animType->transform) != 0 )
00800     {
00801         const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
00802         char joint_path[200];
00803 
00804         if ( is_joint ) 
00805             armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
00806 
00807 
00808         if (!ob->adt || !ob->adt->action) act = verify_adt_action((ID*)&ob->id, 1);
00809         else act = ob->adt->action;
00810 
00811         //Get the list of animation curves of the object
00812         ListBase *AnimCurves = &(act->curves);
00813 
00814         const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
00815 
00816         //for each transformation in node 
00817         for (unsigned int i = 0; i < nodeTransforms.getCount(); i++) {
00818             COLLADAFW::Transformation *transform = nodeTransforms[i];
00819             COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
00820 
00821             bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
00822             bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
00823 
00824             const COLLADAFW::UniqueId& listid = transform->getAnimationList();
00825 
00826             //check if transformation has animations
00827             if (animlist_map.find(listid) == animlist_map.end()) continue ; 
00828             else 
00829             {
00830                 //transformation has animations
00831                 const COLLADAFW::AnimationList *animlist = animlist_map[listid];
00832                 const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
00833                 //all the curves belonging to the current binding
00834                 std::vector<FCurve*> animcurves;
00835                 for (unsigned int j = 0; j < bindings.getCount(); j++) {
00836                     animcurves = curve_map[bindings[j].animation];
00837                     if ( is_matrix )
00838                         apply_matrix_curves(ob, animcurves, root , node,  transform  );
00839                     else {              
00840                         //calculate rnapaths and array index of fcurves according to transformation and animation class
00841                         Assign_transform_animations(transform, &bindings[j], &animcurves, is_joint, joint_path ); 
00842 
00843                         std::vector<FCurve*>::iterator iter;
00844                         //Add the curves of the current animation to the object
00845                         for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
00846                             FCurve * fcu = *iter;
00847                             if ((ob->type == OB_ARMATURE))
00848                                 add_bone_fcurve( ob, node , fcu );
00849                             else 
00850                                 BLI_addtail(AnimCurves, fcu);   
00851                         }
00852                     }
00853                 }
00854             }
00855             if (is_rotation) {
00856                 if (is_joint) 
00857                 {
00858                     bPoseChannel *chan = get_pose_channel(ob->pose, bone_name);
00859                     chan->rotmode = ROT_MODE_EUL;
00860                 }
00861                 else 
00862                 {
00863                     ob->rotmode = ROT_MODE_EUL;
00864                 }
00865             }
00866         }
00867     }
00868 
00869     if ((animType->light) != 0)
00870     {
00871         Lamp * lamp  = (Lamp*) ob->data;
00872 
00873         if (!lamp->adt || !lamp->adt->action) act = verify_adt_action((ID*)&lamp->id, 1);
00874         else act = lamp->adt->action;
00875 
00876         ListBase *AnimCurves = &(act->curves);
00877         const COLLADAFW::InstanceLightPointerArray& nodeLights = node->getInstanceLights();
00878 
00879         for (unsigned int i = 0; i < nodeLights.getCount(); i++) {
00880             const COLLADAFW::Light *light = (COLLADAFW::Light *) FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
00881 
00882             if ((animType->light & LIGHT_COLOR) != 0)
00883             {
00884                 const COLLADAFW::Color *col =  &(light->getColor());
00885                 const COLLADAFW::UniqueId& listid = col->getAnimationList();
00886 
00887                 Assign_color_animations(listid, AnimCurves, "color"); 
00888             }
00889             if ((animType->light & LIGHT_FOA) != 0 )
00890             {
00891                 const COLLADAFW::AnimatableFloat *foa =  &(light->getFallOffAngle());
00892                 const COLLADAFW::UniqueId& listid = foa->getAnimationList();
00893 
00894                 Assign_float_animations( listid ,AnimCurves, "spot_size"); 
00895             }
00896             if ( (animType->light & LIGHT_FOE) != 0 )
00897             {
00898                 const COLLADAFW::AnimatableFloat *foe =  &(light->getFallOffExponent());
00899                 const COLLADAFW::UniqueId& listid = foe->getAnimationList();
00900 
00901                 Assign_float_animations( listid ,AnimCurves, "spot_blend"); 
00902 
00903             }
00904         }
00905     }
00906 
00907     if ( (animType->camera) != 0) 
00908     {
00909         Camera * camera  = (Camera*) ob->data;
00910 
00911         if (!camera->adt || !camera->adt->action) act = verify_adt_action((ID*)&camera->id, 1);
00912         else act = camera->adt->action;
00913 
00914         ListBase *AnimCurves = &(act->curves);
00915         const COLLADAFW::InstanceCameraPointerArray& nodeCameras= node->getInstanceCameras();
00916 
00917         for (unsigned int i = 0; i < nodeCameras.getCount(); i++) {
00918             const COLLADAFW::Camera *camera = (COLLADAFW::Camera *) FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
00919 
00920             if ((animType->camera & CAMERA_XFOV) != 0 )
00921             {
00922                 const COLLADAFW::AnimatableFloat *xfov =  &(camera->getXFov());
00923                 const COLLADAFW::UniqueId& listid = xfov->getAnimationList();
00924                 Assign_float_animations( listid ,AnimCurves, "lens"); 
00925             }
00926 
00927             else if ((animType->camera & CAMERA_XMAG) != 0 )
00928             {
00929                 const COLLADAFW::AnimatableFloat *xmag =  &(camera->getXMag());
00930                 const COLLADAFW::UniqueId& listid = xmag->getAnimationList();
00931                 Assign_float_animations( listid ,AnimCurves, "ortho_scale"); 
00932             }
00933 
00934             if ((animType->camera & CAMERA_ZFAR) != 0 )
00935             {
00936                 const COLLADAFW::AnimatableFloat *zfar =  &(camera->getFarClippingPlane());
00937                 const COLLADAFW::UniqueId& listid = zfar->getAnimationList();
00938                 Assign_float_animations( listid ,AnimCurves, "clip_end"); 
00939             }
00940 
00941             if ((animType->camera & CAMERA_ZNEAR) != 0 )
00942             {
00943                 const COLLADAFW::AnimatableFloat *znear =  &(camera->getNearClippingPlane());
00944                 const COLLADAFW::UniqueId& listid = znear->getAnimationList();
00945                 Assign_float_animations( listid ,AnimCurves, "clip_start"); 
00946             }
00947 
00948         }
00949     }
00950     if ( animType->material != 0){
00951         Material *ma = give_current_material(ob, 1);
00952         if (!ma->adt || !ma->adt->action) act = verify_adt_action((ID*)&ma->id, 1);
00953         else act = ma->adt->action;
00954 
00955         ListBase *AnimCurves = &(act->curves);
00956 
00957         const COLLADAFW::InstanceGeometryPointerArray& nodeGeoms = node->getInstanceGeometries();
00958         for (unsigned int i = 0; i < nodeGeoms.getCount(); i++) {
00959             const COLLADAFW::MaterialBindingArray& matBinds = nodeGeoms[i]->getMaterialBindings();
00960             for (unsigned int j = 0; j < matBinds.getCount(); j++) {
00961                 const COLLADAFW::UniqueId & matuid = matBinds[j].getReferencedMaterial();
00962                 const COLLADAFW::Effect *ef = (COLLADAFW::Effect *) (FW_object_map[matuid]);
00963                 if (ef != NULL) { /* can be NULL [#28909] */
00964                     const COLLADAFW::CommonEffectPointerArray& commonEffects  =  ef->getCommonEffects();
00965                     COLLADAFW::EffectCommon *efc = commonEffects[0];
00966                     if((animType->material & MATERIAL_SHININESS) != 0){
00967                         const COLLADAFW::FloatOrParam *shin = &(efc->getShininess());
00968                         const COLLADAFW::UniqueId& listid =  shin->getAnimationList();
00969                         Assign_float_animations( listid, AnimCurves , "specular_hardness" );
00970                     }
00971 
00972                     if((animType->material & MATERIAL_IOR) != 0){
00973                         const COLLADAFW::FloatOrParam *ior = &(efc->getIndexOfRefraction());
00974                         const COLLADAFW::UniqueId& listid =  ior->getAnimationList();
00975                         Assign_float_animations( listid, AnimCurves , "raytrace_transparency.ior" );
00976                     }
00977 
00978                     if((animType->material & MATERIAL_SPEC_COLOR) != 0){
00979                         const COLLADAFW::ColorOrTexture *cot = &(efc->getSpecular());
00980                         const COLLADAFW::UniqueId& listid =  cot->getColor().getAnimationList();
00981                         Assign_color_animations( listid, AnimCurves , "specular_color" );
00982                     }
00983 
00984                     if((animType->material & MATERIAL_DIFF_COLOR) != 0){
00985                         const COLLADAFW::ColorOrTexture *cot = &(efc->getDiffuse());
00986                         const COLLADAFW::UniqueId& listid =  cot->getColor().getAnimationList();
00987                         Assign_color_animations( listid, AnimCurves , "diffuse_color" );
00988                     }
00989                 }
00990             }
00991         }   
00992     }
00993 }
00994 
00995 
00996 //Check if object is animated by checking if animlist_map holds the animlist_id of node transforms
00997 AnimationImporter::AnimMix* AnimationImporter::get_animation_type ( const COLLADAFW::Node * node , 
00998                                             std::map<COLLADAFW::UniqueId, const COLLADAFW::Object*> FW_object_map) 
00999 {
01000     AnimMix *types = new AnimMix();
01001 
01002     const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
01003 
01004     //for each transformation in node 
01005     for (unsigned int i = 0; i < nodeTransforms.getCount(); i++) {
01006         COLLADAFW::Transformation *transform = nodeTransforms[i];
01007         const COLLADAFW::UniqueId& listid = transform->getAnimationList();
01008 
01009         //check if transformation has animations
01010         if (animlist_map.find(listid) == animlist_map.end()) continue ;
01011         else 
01012         {
01013             types->transform = types->transform|NODE_TRANSFORM;
01014             break;
01015         }
01016     }
01017     const COLLADAFW::InstanceLightPointerArray& nodeLights = node->getInstanceLights();
01018 
01019     for (unsigned int i = 0; i < nodeLights.getCount(); i++) {
01020         const COLLADAFW::Light *light = (COLLADAFW::Light *) FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
01021         types->light = setAnimType(&(light->getColor()),(types->light), LIGHT_COLOR);
01022         types->light = setAnimType(&(light->getFallOffAngle()),(types->light), LIGHT_FOA);
01023         types->light = setAnimType(&(light->getFallOffExponent()),(types->light), LIGHT_FOE);
01024 
01025         if ( types->light != 0) break;
01026 
01027     }
01028 
01029     const COLLADAFW::InstanceCameraPointerArray& nodeCameras = node->getInstanceCameras();
01030     for (unsigned int i = 0; i < nodeCameras.getCount(); i++) {
01031         const COLLADAFW::Camera *camera = (COLLADAFW::Camera *) FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
01032 
01033         if ( camera->getCameraType() == COLLADAFW::Camera::PERSPECTIVE )
01034         {
01035             types->camera = setAnimType(&(camera->getXMag()),(types->camera), CAMERA_XFOV);
01036         }
01037         else
01038         {
01039             types->camera = setAnimType(&(camera->getXMag()),(types->camera), CAMERA_XMAG);
01040         }
01041         types->camera = setAnimType(&(camera->getFarClippingPlane()),(types->camera), CAMERA_ZFAR);
01042         types->camera = setAnimType(&(camera->getNearClippingPlane()),(types->camera), CAMERA_ZNEAR);
01043 
01044         if ( types->camera != 0) break;
01045 
01046     }
01047 
01048     const COLLADAFW::InstanceGeometryPointerArray& nodeGeoms = node->getInstanceGeometries();
01049     for (unsigned int i = 0; i < nodeGeoms.getCount(); i++) {
01050         const COLLADAFW::MaterialBindingArray& matBinds = nodeGeoms[i]->getMaterialBindings();
01051         for (unsigned int j = 0; j < matBinds.getCount(); j++) {
01052             const COLLADAFW::UniqueId & matuid = matBinds[j].getReferencedMaterial();
01053             const COLLADAFW::Effect *ef = (COLLADAFW::Effect *) (FW_object_map[matuid]);
01054             if (ef != NULL) { /* can be NULL [#28909] */
01055                 const COLLADAFW::CommonEffectPointerArray& commonEffects = ef->getCommonEffects();
01056                 if(!commonEffects.empty()) {
01057                     COLLADAFW::EffectCommon *efc = commonEffects[0];
01058                     types->material =  setAnimType(&(efc->getShininess()),(types->material), MATERIAL_SHININESS);
01059                     types->material =  setAnimType(&(efc->getSpecular().getColor()),(types->material), MATERIAL_SPEC_COLOR);
01060                     types->material =  setAnimType(&(efc->getDiffuse().getColor()),(types->material), MATERIAL_DIFF_COLOR);
01061                     // types->material =  setAnimType(&(efc->get()),(types->material), MATERIAL_TRANSPARENCY);
01062                     types->material =  setAnimType(&(efc->getIndexOfRefraction()),(types->material), MATERIAL_IOR);
01063                 }
01064             }
01065         }
01066     }
01067     return types;
01068 }
01069 
01070 int AnimationImporter::setAnimType ( const COLLADAFW::Animatable * prop , int types, int addition)
01071 {
01072     const COLLADAFW::UniqueId& listid =  prop->getAnimationList();
01073     if (animlist_map.find(listid) != animlist_map.end())
01074         return types|addition;
01075     else return types;
01076 }       
01077 
01078 // Is not used anymore.
01079 void AnimationImporter::find_frames_old(std::vector<float> * frames, COLLADAFW::Node * node , COLLADAFW::Transformation::TransformationType tm_type)
01080 {
01081     bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
01082     bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
01083     // for each <rotate>, <translate>, etc. there is a separate Transformation
01084     const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
01085 
01086     unsigned int i;
01087     // find frames at which to sample plus convert all rotation keys to radians
01088     for (i = 0; i < nodeTransforms.getCount(); i++) {
01089         COLLADAFW::Transformation *transform = nodeTransforms[i];
01090         COLLADAFW::Transformation::TransformationType nodeTmType = transform->getTransformationType();
01091 
01092 
01093         if (nodeTmType == tm_type) {
01094             //get animation bindings for the current transformation
01095             const COLLADAFW::UniqueId& listid = transform->getAnimationList();
01096             //if transform is animated its animlist must exist.
01097             if (animlist_map.find(listid) != animlist_map.end()) {
01098                 
01099                 const COLLADAFW::AnimationList *animlist = animlist_map[listid];
01100                 const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
01101 
01102                 if (bindings.getCount()) {
01103                     //for each AnimationBinding get the fcurves which animate the transform
01104                     for (unsigned int j = 0; j < bindings.getCount(); j++) {
01105                         std::vector<FCurve*>& curves = curve_map[bindings[j].animation];
01106                         bool xyz = ((nodeTmType == COLLADAFW::Transformation::TRANSLATE || nodeTmType == COLLADAFW::Transformation::SCALE) && bindings[j].animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
01107 
01108                         if ((!xyz && curves.size() == 1) || (xyz && curves.size() == 3) || is_matrix) {
01109                             std::vector<FCurve*>::iterator iter;
01110 
01111                             for (iter = curves.begin(); iter != curves.end(); iter++) {
01112                                 FCurve *fcu = *iter;
01113 
01114                                 //if transform is rotation the fcurves values must be turned in to radian.
01115                                 if (is_rotation)
01116                                     fcurve_deg_to_rad(fcu);
01117 
01118                                 for (unsigned int k = 0; k < fcu->totvert; k++) {
01119                                     //get frame value from bezTriple
01120                                     float fra = fcu->bezt[k].vec[1][0];
01121                                     //if frame already not added add frame to frames
01122                                     if (std::find(frames->begin(), frames->end(), fra) == frames->end())
01123                                         frames->push_back(fra);
01124                                 }
01125                             }
01126                         }
01127                         else {
01128                             fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, (int)curves.size());
01129                         }
01130                     }
01131                 }
01132             }
01133         }
01134     }
01135 }
01136 
01137 
01138 
01139 // prerequisites:
01140 // animlist_map - map animlist id -> animlist
01141 // curve_map - map anim id -> curve(s)
01142 Object *AnimationImporter::translate_animation_OLD(COLLADAFW::Node *node,
01143                             std::map<COLLADAFW::UniqueId, Object*>& object_map,
01144                             std::map<COLLADAFW::UniqueId, COLLADAFW::Node*>& root_map,
01145                             COLLADAFW::Transformation::TransformationType tm_type,
01146                             Object *par_job)
01147 {
01148     
01149     bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
01150     bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
01151     bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
01152     
01153     COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ? node : root_map[node->getUniqueId()];
01154     Object *ob = is_joint ? armature_importer->get_armature_for_joint(node) : object_map[node->getUniqueId()];
01155     const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
01156     if (!ob) {
01157         fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
01158         return NULL;
01159     }
01160 
01161     // frames at which to sample
01162     std::vector<float> frames;
01163     
01164     find_frames_old(&frames, node , tm_type);
01165     
01166     unsigned int i;
01167     
01168     float irest_dae[4][4];
01169     float rest[4][4], irest[4][4];
01170 
01171     if (is_joint) {
01172         get_joint_rest_mat(irest_dae, root, node);
01173         invert_m4(irest_dae);
01174 
01175         Bone *bone = get_named_bone((bArmature*)ob->data, bone_name);
01176         if (!bone) {
01177             fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
01178             return NULL;
01179         }
01180 
01181         unit_m4(rest);
01182         copy_m4_m4(rest, bone->arm_mat);
01183         invert_m4_m4(irest, rest);
01184     }
01185 
01186     Object *job = NULL;
01187 
01188 #ifdef ARMATURE_TEST
01189     FCurve *job_curves[10];
01190     job = get_joint_object(root, node, par_job);
01191 #endif
01192 
01193     if (frames.size() == 0)
01194         return job;
01195 
01196     std::sort(frames.begin(), frames.end());
01197 
01198     const char *tm_str = NULL;
01199     switch (tm_type) {
01200     case COLLADAFW::Transformation::ROTATE:
01201         tm_str = "rotation_quaternion";
01202         break;
01203     case COLLADAFW::Transformation::SCALE:
01204         tm_str = "scale";
01205         break;
01206     case COLLADAFW::Transformation::TRANSLATE:
01207         tm_str = "location";
01208         break;
01209     case COLLADAFW::Transformation::MATRIX:
01210         break;
01211     default:
01212         return job;
01213     }
01214 
01215     char rna_path[200];
01216     char joint_path[200];
01217 
01218     if (is_joint)
01219         armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
01220 
01221     // new curves
01222     FCurve *newcu[10]; // if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale
01223     unsigned int totcu = is_matrix ? 10 : (is_rotation ? 4 : 3);
01224 
01225     for (i = 0; i < totcu; i++) {
01226 
01227         int axis = i;
01228 
01229         if (is_matrix) {
01230             if (i < 4) {
01231                 tm_str = "rotation_quaternion";
01232                 axis = i;
01233             }
01234             else if (i < 7) {
01235                 tm_str = "location";
01236                 axis = i - 4;
01237             }
01238             else {
01239                 tm_str = "scale";
01240                 axis = i - 7;
01241             }
01242         }
01243 
01244         if (is_joint)
01245             BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
01246         else
01247             BLI_strncpy(rna_path, tm_str, sizeof(rna_path));
01248         newcu[i] = create_fcurve(axis, rna_path);
01249 
01250 #ifdef ARMATURE_TEST
01251         if (is_joint)
01252             job_curves[i] = create_fcurve(axis, tm_str);
01253 #endif
01254     }
01255 
01256     std::vector<float>::iterator it;
01257 
01258     // sample values at each frame
01259     for (it = frames.begin(); it != frames.end(); it++) {
01260         float fra = *it;
01261 
01262         float mat[4][4];
01263         float matfra[4][4];
01264 
01265         unit_m4(matfra);
01266 
01267         // calc object-space mat
01268         evaluate_transform_at_frame(matfra, node, fra);
01269 
01270         // for joints, we need a special matrix
01271         if (is_joint) {
01272             // special matrix: iR * M * iR_dae * R
01273             // where R, iR are bone rest and inverse rest mats in world space (Blender bones),
01274             // iR_dae is joint inverse rest matrix (DAE) and M is an evaluated joint world-space matrix (DAE)
01275             float temp[4][4], par[4][4];
01276 
01277             // calc M
01278             calc_joint_parent_mat_rest(par, NULL, root, node);
01279             mult_m4_m4m4(temp, par, matfra);
01280 
01281             // evaluate_joint_world_transform_at_frame(temp, NULL, , node, fra);
01282 
01283             // calc special matrix
01284             mul_serie_m4(mat, irest, temp, irest_dae, rest, NULL, NULL, NULL, NULL);
01285         }
01286         else {
01287             copy_m4_m4(mat, matfra);
01288         }
01289 
01290         float val[4], rot[4], loc[3], scale[3];
01291 
01292         switch (tm_type) {
01293         case COLLADAFW::Transformation::ROTATE:
01294             mat4_to_quat(val, mat);
01295             break;
01296         case COLLADAFW::Transformation::SCALE:
01297             mat4_to_size(val, mat);
01298             break;
01299         case COLLADAFW::Transformation::TRANSLATE:
01300             copy_v3_v3(val, mat[3]);
01301             break;
01302         case COLLADAFW::Transformation::MATRIX:
01303             mat4_to_quat(rot, mat);
01304             copy_v3_v3(loc, mat[3]);
01305             mat4_to_size(scale, mat);
01306             break;
01307         default:
01308             break;
01309         }
01310 
01311         // add keys
01312         for (i = 0; i < totcu; i++) {
01313             if (is_matrix) {
01314                 if (i < 4)
01315                     add_bezt(newcu[i], fra, rot[i]);
01316                 else if (i < 7)
01317                     add_bezt(newcu[i], fra, loc[i - 4]);
01318                 else
01319                     add_bezt(newcu[i], fra, scale[i - 7]);
01320             }
01321             else {
01322                 add_bezt(newcu[i], fra, val[i]);
01323             }
01324         }
01325 
01326 #ifdef ARMATURE_TEST
01327         if (is_joint) {
01328             switch (tm_type) {
01329             case COLLADAFW::Transformation::ROTATE:
01330                 mat4_to_quat(val, matfra);
01331                 break;
01332             case COLLADAFW::Transformation::SCALE:
01333                 mat4_to_size(val, matfra);
01334                 break;
01335             case COLLADAFW::Transformation::TRANSLATE:
01336                 copy_v3_v3(val, matfra[3]);
01337                 break;
01338             case MATRIX:
01339                 mat4_to_quat(rot, matfra);
01340                 copy_v3_v3(loc, matfra[3]);
01341                 mat4_to_size(scale, matfra);
01342                 break;
01343             default:
01344                 break;
01345             }
01346 
01347             for (i = 0; i < totcu; i++) {
01348                 if (is_matrix) {
01349                     if (i < 4)
01350                         add_bezt(job_curves[i], fra, rot[i]);
01351                     else if (i < 7)
01352                         add_bezt(job_curves[i], fra, loc[i - 4]);
01353                     else
01354                         add_bezt(job_curves[i], fra, scale[i - 7]);
01355                 }
01356                 else {
01357                     add_bezt(job_curves[i], fra, val[i]);
01358                 }
01359             }
01360         }
01361 #endif
01362     }
01363 
01364     verify_adt_action((ID*)&ob->id, 1);
01365 
01366     ListBase *curves = &ob->adt->action->curves;
01367 
01368     // add curves
01369     for (i = 0; i < totcu; i++) {
01370         if (is_joint)
01371             add_bone_fcurve(ob, node, newcu[i]);
01372         else
01373             BLI_addtail(curves, newcu[i]);
01374 
01375 #ifdef ARMATURE_TEST
01376         if (is_joint)
01377             BLI_addtail(&job->adt->action->curves, job_curves[i]);
01378 #endif
01379     }
01380 
01381     if (is_rotation || is_matrix) {
01382         if (is_joint) {
01383             bPoseChannel *chan = get_pose_channel(ob->pose, bone_name);
01384             chan->rotmode = ROT_MODE_QUAT;
01385         }
01386         else {
01387             ob->rotmode = ROT_MODE_QUAT;
01388         }
01389     }
01390 
01391     return job;
01392 }
01393 
01394 // internal, better make it private
01395 // warning: evaluates only rotation and only assigns matrix transforms now
01396 // prerequisites: animlist_map, curve_map
01397 void AnimationImporter::evaluate_transform_at_frame(float mat[4][4], COLLADAFW::Node *node, float fra)
01398 {
01399     const COLLADAFW::TransformationPointerArray& tms = node->getTransformations();
01400 
01401     unit_m4(mat);
01402 
01403     for (unsigned int i = 0; i < tms.getCount(); i++) {
01404         COLLADAFW::Transformation *tm = tms[i];
01405         COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
01406         float m[4][4];
01407 
01408         unit_m4(m);
01409         if ( type != COLLADAFW::Transformation::MATRIX )
01410             continue;
01411 
01412         std::string nodename = node->getName().size() ? node->getName() : node->getOriginalId();
01413         if (!evaluate_animation(tm, m, fra, nodename.c_str())) {
01414             /*switch (type) {
01415             case COLLADAFW::Transformation::ROTATE:
01416                 dae_rotate_to_mat4(tm, m);
01417                 break;
01418             case COLLADAFW::Transformation::TRANSLATE:
01419                 dae_translate_to_mat4(tm, m);
01420                 break;
01421             case COLLADAFW::Transformation::SCALE:
01422                 dae_scale_to_mat4(tm, m);
01423                 break;
01424             case COLLADAFW::Transformation::MATRIX:
01425                 dae_matrix_to_mat4(tm, m);
01426                 break;
01427             default:
01428                 fprintf(stderr, "unsupported transformation type %d\n", type);
01429             }*/
01430             dae_matrix_to_mat4(tm, m);
01431             
01432         }
01433 
01434         float temp[4][4];
01435         copy_m4_m4(temp, mat);
01436 
01437         mult_m4_m4m4(mat, temp, m);
01438     }
01439 }
01440 
01441 // return true to indicate that mat contains a sane value
01442 bool AnimationImporter::evaluate_animation(COLLADAFW::Transformation *tm, float mat[4][4], float fra, const char *node_id)
01443 {
01444     const COLLADAFW::UniqueId& listid = tm->getAnimationList();
01445     COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
01446 
01447     if (type != COLLADAFW::Transformation::ROTATE &&
01448         type != COLLADAFW::Transformation::SCALE &&
01449         type != COLLADAFW::Transformation::TRANSLATE &&
01450         type != COLLADAFW::Transformation::MATRIX) {
01451         fprintf(stderr, "animation of transformation %d is not supported yet\n", type);
01452         return false;
01453     }
01454 
01455     if (animlist_map.find(listid) == animlist_map.end())
01456         return false;
01457 
01458     const COLLADAFW::AnimationList *animlist = animlist_map[listid];
01459     const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
01460 
01461     if (bindings.getCount()) {
01462         float vec[3];
01463 
01464         bool is_scale = (type == COLLADAFW::Transformation::SCALE);
01465         bool is_translate = (type == COLLADAFW::Transformation::TRANSLATE);
01466 
01467         if (is_scale)
01468             dae_scale_to_v3(tm, vec);
01469         else if (is_translate)
01470             dae_translate_to_v3(tm, vec);
01471 
01472         for (unsigned int j = 0; j < bindings.getCount(); j++) {
01473             const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[j];
01474             std::vector<FCurve*>& curves = curve_map[binding.animation];
01475             COLLADAFW::AnimationList::AnimationClass animclass = binding.animationClass;
01476             char path[100];
01477 
01478             switch (type) {
01479             case COLLADAFW::Transformation::ROTATE:
01480                 BLI_snprintf(path, sizeof(path), "%s.rotate (binding %u)", node_id, j);
01481                 break;
01482             case COLLADAFW::Transformation::SCALE:
01483                 BLI_snprintf(path, sizeof(path), "%s.scale (binding %u)", node_id, j);
01484                 break;
01485             case COLLADAFW::Transformation::TRANSLATE:
01486                 BLI_snprintf(path, sizeof(path), "%s.translate (binding %u)", node_id, j);
01487                 break;
01488             case COLLADAFW::Transformation::MATRIX:
01489                 BLI_snprintf(path, sizeof(path), "%s.matrix (binding %u)", node_id, j);
01490                 break;
01491             default:
01492                 break;
01493             }
01494 
01495             if (animclass == COLLADAFW::AnimationList::UNKNOWN_CLASS) {
01496                 fprintf(stderr, "%s: UNKNOWN animation class\n", path);
01497                 //continue;
01498             }
01499 
01500             if (type == COLLADAFW::Transformation::ROTATE) {
01501                 if (curves.size() != 1) {
01502                     fprintf(stderr, "expected 1 curve, got %d\n", (int)curves.size());
01503                     return false;
01504                 }
01505 
01506                 // TODO support other animclasses
01507                 if (animclass != COLLADAFW::AnimationList::ANGLE) {
01508                     fprintf(stderr, "%s: animation class %d is not supported yet\n", path, animclass);
01509                     return false;
01510                 }
01511 
01512                 COLLADABU::Math::Vector3& axis = ((COLLADAFW::Rotate*)tm)->getRotationAxis();
01513                 float ax[3] = {axis[0], axis[1], axis[2]};
01514                 float angle = evaluate_fcurve(curves[0], fra);
01515                 axis_angle_to_mat4(mat, ax, angle);
01516 
01517                 return true;
01518             }
01519             else if (is_scale || is_translate) {
01520                 bool is_xyz = animclass == COLLADAFW::AnimationList::POSITION_XYZ;
01521 
01522                 if ((!is_xyz && curves.size() != 1) || (is_xyz && curves.size() != 3)) {
01523                     if (is_xyz)
01524                         fprintf(stderr, "%s: expected 3 curves, got %d\n", path, (int)curves.size());
01525                     else
01526                         fprintf(stderr, "%s: expected 1 curve, got %d\n", path, (int)curves.size());
01527                     return false;
01528                 }
01529                 
01530                 switch (animclass) {
01531                 case COLLADAFW::AnimationList::POSITION_X:
01532                     vec[0] = evaluate_fcurve(curves[0], fra);
01533                     break;
01534                 case COLLADAFW::AnimationList::POSITION_Y:
01535                     vec[1] = evaluate_fcurve(curves[0], fra);
01536                     break;
01537                 case COLLADAFW::AnimationList::POSITION_Z:
01538                     vec[2] = evaluate_fcurve(curves[0], fra);
01539                     break;
01540                 case COLLADAFW::AnimationList::POSITION_XYZ:
01541                     vec[0] = evaluate_fcurve(curves[0], fra);
01542                     vec[1] = evaluate_fcurve(curves[1], fra);
01543                     vec[2] = evaluate_fcurve(curves[2], fra);
01544                     break;
01545                 default:
01546                     fprintf(stderr, "%s: animation class %d is not supported yet\n", path, animclass);
01547                     break;
01548                 }
01549             }
01550             else if (type == COLLADAFW::Transformation::MATRIX) {
01551                 // for now, of matrix animation, support only the case when all values are packed into one animation
01552                 if (curves.size() != 16) {
01553                     fprintf(stderr, "%s: expected 16 curves, got %d\n", path, (int)curves.size());
01554                     return false;
01555                 }
01556 
01557                 COLLADABU::Math::Matrix4 matrix;
01558                 int i = 0, j = 0;
01559 
01560                 for (std::vector<FCurve*>::iterator it = curves.begin(); it != curves.end(); it++) {
01561                     matrix.setElement(i, j, evaluate_fcurve(*it, fra));
01562                     j++;
01563                     if (j == 4) {
01564                         i++;
01565                         j = 0;
01566                     }
01567                     unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), *it), unused_curves.end());
01568                 }
01569 
01570                 COLLADAFW::Matrix tm(matrix);
01571                 dae_matrix_to_mat4(&tm, mat);
01572 
01573                 std::vector<FCurve*>::iterator it;
01574 
01575                 return true;
01576             }
01577         }
01578 
01579         if (is_scale)
01580             size_to_mat4(mat, vec);
01581         else
01582             copy_v3_v3(mat[3], vec);
01583 
01584         return is_scale || is_translate;
01585     }
01586 
01587     return false;
01588 }
01589 
01590 // gives a world-space mat of joint at rest position
01591 void AnimationImporter::get_joint_rest_mat(float mat[4][4], COLLADAFW::Node *root, COLLADAFW::Node *node)
01592 {
01593     // if bind mat is not available,
01594     // use "current" node transform, i.e. all those tms listed inside <node>
01595     if (!armature_importer->get_joint_bind_mat(mat, node)) {
01596         float par[4][4], m[4][4];
01597 
01598         calc_joint_parent_mat_rest(par, NULL, root, node);
01599         get_node_mat(m, node, NULL, NULL);
01600         mult_m4_m4m4(mat, par, m);
01601     }
01602 }
01603 
01604 // gives a world-space mat, end's mat not included
01605 bool AnimationImporter::calc_joint_parent_mat_rest(float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end)
01606 {
01607     float m[4][4];
01608 
01609     if (node == end) {
01610         par ? copy_m4_m4(mat, par) : unit_m4(mat);
01611         return true;
01612     }
01613 
01614     // use bind matrix if available or calc "current" world mat
01615     if (!armature_importer->get_joint_bind_mat(m, node)) {
01616         if (par) {
01617             float temp[4][4];
01618             get_node_mat(temp, node, NULL, NULL);
01619             mult_m4_m4m4(m, par, temp);
01620         }
01621         else {
01622             get_node_mat(m, node, NULL, NULL);
01623         }
01624     }
01625 
01626     COLLADAFW::NodePointerArray& children = node->getChildNodes();
01627     for (unsigned int i = 0; i < children.getCount(); i++) {
01628         if (calc_joint_parent_mat_rest(mat, m, children[i], end))
01629             return true;
01630     }
01631 
01632     return false;
01633 }
01634 
01635 #ifdef ARMATURE_TEST
01636 Object *AnimationImporter::get_joint_object(COLLADAFW::Node *root, COLLADAFW::Node *node, Object *par_job)
01637 {
01638     if (joint_objects.find(node->getUniqueId()) == joint_objects.end()) {
01639         Object *job = add_object(scene, OB_EMPTY);
01640 
01641         rename_id((ID*)&job->id, (char*)get_joint_name(node));
01642 
01643         job->lay = object_in_scene(job, scene)->lay = 2;
01644 
01645         mul_v3_fl(job->size, 0.5f);
01646         job->recalc |= OB_RECALC_OB;
01647 
01648         verify_adt_action((ID*)&job->id, 1);
01649 
01650         job->rotmode = ROT_MODE_QUAT;
01651 
01652         float mat[4][4];
01653         get_joint_rest_mat(mat, root, node);
01654 
01655         if (par_job) {
01656             float temp[4][4], ipar[4][4];
01657             invert_m4_m4(ipar, par_job->obmat);
01658             copy_m4_m4(temp, mat);
01659             mult_m4_m4m4(mat, ipar, temp);
01660         }
01661 
01662         TransformBase::decompose(mat, job->loc, NULL, job->quat, job->size);
01663 
01664         if (par_job) {
01665             job->parent = par_job;
01666 
01667             par_job->recalc |= OB_RECALC_OB;
01668             job->parsubstr[0] = 0;
01669         }
01670 
01671         where_is_object(scene, job);
01672 
01673         // after parenting and layer change
01674         DAG_scene_sort(CTX_data_main(C), scene);
01675 
01676         joint_objects[node->getUniqueId()] = job;
01677     }
01678 
01679     return joint_objects[node->getUniqueId()];
01680 }
01681 #endif
01682 
01683 #if 0
01684 // recursively evaluates joint tree until end is found, mat then is world-space matrix of end
01685 // mat must be identity on enter, node must be root
01686 bool AnimationImporter::evaluate_joint_world_transform_at_frame(float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end, float fra)
01687 {
01688     float m[4][4];
01689     if (par) {
01690         float temp[4][4];
01691         evaluate_transform_at_frame(temp, node, node == end ? fra : 0.0f);
01692         mult_m4_m4m4(m, par, temp);
01693     }
01694     else {
01695         evaluate_transform_at_frame(m, node, node == end ? fra : 0.0f);
01696     }
01697 
01698     if (node == end) {
01699         copy_m4_m4(mat, m);
01700         return true;
01701     }
01702     else {
01703         COLLADAFW::NodePointerArray& children = node->getChildNodes();
01704         for (int i = 0; i < children.getCount(); i++) {
01705             if (evaluate_joint_world_transform_at_frame(mat, m, children[i], end, fra))
01706                 return true;
01707         }
01708     }
01709 
01710     return false;
01711 }
01712 #endif
01713 
01714 void AnimationImporter::add_bone_fcurve(Object *ob, COLLADAFW::Node *node, FCurve *fcu)
01715 {
01716     const char *bone_name = bc_get_joint_name(node);
01717     bAction *act = ob->adt->action;
01718             
01719     /* try to find group */
01720     bActionGroup *grp = action_groups_find_named(act, bone_name);
01721 
01722     /* no matching groups, so add one */
01723     if (grp == NULL) {
01724         /* Add a new group, and make it active */
01725         grp = (bActionGroup*)MEM_callocN(sizeof(bActionGroup), "bActionGroup");
01726                     
01727         grp->flag = AGRP_SELECTED;
01728         BLI_strncpy(grp->name, bone_name, sizeof(grp->name));
01729                     
01730         BLI_addtail(&act->groups, grp);
01731         BLI_uniquename(&act->groups, grp, "Group", '.', offsetof(bActionGroup, name), 64);
01732     }
01733                 
01734     /* add F-Curve to group */
01735     action_groups_add_channel(act, grp, fcu);
01736 }
01737 
01738 void AnimationImporter::add_bezt(FCurve *fcu, float fra, float value)
01739 {
01740     //float fps = (float)FPS;
01741     BezTriple bez;
01742     memset(&bez, 0, sizeof(BezTriple));
01743     bez.vec[1][0] = fra ;
01744     bez.vec[1][1] = value;
01745     bez.ipo = BEZT_IPO_LIN ;/* use default interpolation mode here... */
01746     bez.f1 = bez.f2 = bez.f3 = SELECT;
01747     bez.h1 = bez.h2 = HD_AUTO;
01748     insert_bezt_fcurve(fcu, &bez, 0);
01749     calchandles_fcurve(fcu);
01750 }
01751