Blender V2.61 - r43446
|
00001 /* 00002 Bullet Continuous Collision Detection and Physics Library 00003 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ 00004 00005 This software is provided 'as-is', without any express or implied warranty. 00006 In no event will the authors be held liable for any damages arising from the use of this software. 00007 Permission is granted to anyone to use this software for any purpose, 00008 including commercial applications, and to alter it and redistribute it freely, 00009 subject to the following restrictions: 00010 00011 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 00012 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 00013 3. This notice may not be removed or altered from any source distribution. 00014 */ 00015 00016 00017 #include "btSubSimplexConvexCast.h" 00018 #include "BulletCollision/CollisionShapes/btConvexShape.h" 00019 00020 #include "BulletCollision/CollisionShapes/btMinkowskiSumShape.h" 00021 #include "BulletCollision/NarrowPhaseCollision/btSimplexSolverInterface.h" 00022 #include "btPointCollector.h" 00023 #include "LinearMath/btTransformUtil.h" 00024 00025 btSubsimplexConvexCast::btSubsimplexConvexCast (const btConvexShape* convexA,const btConvexShape* convexB,btSimplexSolverInterface* simplexSolver) 00026 :m_simplexSolver(simplexSolver), 00027 m_convexA(convexA),m_convexB(convexB) 00028 { 00029 } 00030 00033 #ifdef BT_USE_DOUBLE_PRECISION 00034 #define MAX_ITERATIONS 64 00035 #else 00036 #define MAX_ITERATIONS 32 00037 #endif 00038 bool btSubsimplexConvexCast::calcTimeOfImpact( 00039 const btTransform& fromA, 00040 const btTransform& toA, 00041 const btTransform& fromB, 00042 const btTransform& toB, 00043 CastResult& result) 00044 { 00045 00046 m_simplexSolver->reset(); 00047 00048 btVector3 linVelA,linVelB; 00049 linVelA = toA.getOrigin()-fromA.getOrigin(); 00050 linVelB = toB.getOrigin()-fromB.getOrigin(); 00051 00052 btScalar lambda = btScalar(0.); 00053 00054 btTransform interpolatedTransA = fromA; 00055 btTransform interpolatedTransB = fromB; 00056 00058 btVector3 r = (linVelA-linVelB); 00059 btVector3 v; 00060 00061 btVector3 supVertexA = fromA(m_convexA->localGetSupportingVertex(-r*fromA.getBasis())); 00062 btVector3 supVertexB = fromB(m_convexB->localGetSupportingVertex(r*fromB.getBasis())); 00063 v = supVertexA-supVertexB; 00064 int maxIter = MAX_ITERATIONS; 00065 00066 btVector3 n; 00067 n.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); 00068 bool hasResult = false; 00069 btVector3 c; 00070 00071 btScalar lastLambda = lambda; 00072 00073 00074 btScalar dist2 = v.length2(); 00075 #ifdef BT_USE_DOUBLE_PRECISION 00076 btScalar epsilon = btScalar(0.0001); 00077 #else 00078 btScalar epsilon = btScalar(0.0001); 00079 #endif //BT_USE_DOUBLE_PRECISION 00080 btVector3 w,p; 00081 btScalar VdotR; 00082 00083 while ( (dist2 > epsilon) && maxIter--) 00084 { 00085 supVertexA = interpolatedTransA(m_convexA->localGetSupportingVertex(-v*interpolatedTransA.getBasis())); 00086 supVertexB = interpolatedTransB(m_convexB->localGetSupportingVertex(v*interpolatedTransB.getBasis())); 00087 w = supVertexA-supVertexB; 00088 00089 btScalar VdotW = v.dot(w); 00090 00091 if (lambda > btScalar(1.0)) 00092 { 00093 return false; 00094 } 00095 00096 if ( VdotW > btScalar(0.)) 00097 { 00098 VdotR = v.dot(r); 00099 00100 if (VdotR >= -(SIMD_EPSILON*SIMD_EPSILON)) 00101 return false; 00102 else 00103 { 00104 lambda = lambda - VdotW / VdotR; 00105 //interpolate to next lambda 00106 // x = s + lambda * r; 00107 interpolatedTransA.getOrigin().setInterpolate3(fromA.getOrigin(),toA.getOrigin(),lambda); 00108 interpolatedTransB.getOrigin().setInterpolate3(fromB.getOrigin(),toB.getOrigin(),lambda); 00109 //m_simplexSolver->reset(); 00110 //check next line 00111 w = supVertexA-supVertexB; 00112 lastLambda = lambda; 00113 n = v; 00114 hasResult = true; 00115 } 00116 } 00118 if (!m_simplexSolver->inSimplex(w)) 00119 m_simplexSolver->addVertex( w, supVertexA , supVertexB); 00120 00121 if (m_simplexSolver->closest(v)) 00122 { 00123 dist2 = v.length2(); 00124 hasResult = true; 00125 //todo: check this normal for validity 00126 //n=v; 00127 //printf("V=%f , %f, %f\n",v[0],v[1],v[2]); 00128 //printf("DIST2=%f\n",dist2); 00129 //printf("numverts = %i\n",m_simplexSolver->numVertices()); 00130 } else 00131 { 00132 dist2 = btScalar(0.); 00133 } 00134 } 00135 00136 //int numiter = MAX_ITERATIONS - maxIter; 00137 // printf("number of iterations: %d", numiter); 00138 00139 //don't report a time of impact when moving 'away' from the hitnormal 00140 00141 00142 result.m_fraction = lambda; 00143 if (n.length2() >= (SIMD_EPSILON*SIMD_EPSILON)) 00144 result.m_normal = n.normalized(); 00145 else 00146 result.m_normal = btVector3(btScalar(0.0), btScalar(0.0), btScalar(0.0)); 00147 00148 //don't report time of impact for motion away from the contact normal (or causes minor penetration) 00149 if (result.m_normal.dot(r)>=-result.m_allowedPenetration) 00150 return false; 00151 00152 btVector3 hitA,hitB; 00153 m_simplexSolver->compute_points(hitA,hitB); 00154 result.m_hitPoint=hitB; 00155 return true; 00156 } 00157 00158 00159 00160