Blender V2.61 - r43446

kernel_camera.h

Go to the documentation of this file.
00001 /*
00002  * Copyright 2011, Blender Foundation.
00003  *
00004  * This program is free software; you can redistribute it and/or
00005  * modify it under the terms of the GNU General Public License
00006  * as published by the Free Software Foundation; either version 2
00007  * of the License, or (at your option) any later version.
00008  *
00009  * This program is distributed in the hope that it will be useful,
00010  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00011  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00012  * GNU General Public License for more details.
00013  *
00014  * You should have received a copy of the GNU General Public License
00015  * along with this program; if not, write to the Free Software Foundation,
00016  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
00017  */
00018 
00019 CCL_NAMESPACE_BEGIN
00020 
00021 /* Perspective Camera */
00022 
00023 __device float2 camera_sample_aperture(KernelGlobals *kg, float u, float v)
00024 {
00025     float blades = kernel_data.cam.blades;
00026 
00027     if(blades == 0.0f) {
00028         /* sample disk */
00029         return concentric_sample_disk(u, v);
00030     }
00031     else {
00032         /* sample polygon */
00033         float rotation = kernel_data.cam.bladesrotation;
00034         return regular_polygon_sample(blades, rotation, u, v);
00035     }
00036 }
00037 
00038 __device void camera_sample_perspective(KernelGlobals *kg, float raster_x, float raster_y, float lens_u, float lens_v, Ray *ray)
00039 {
00040     /* create ray form raster position */
00041     Transform rastertocamera = kernel_data.cam.rastertocamera;
00042     float3 Pcamera = transform(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
00043 
00044     ray->P = make_float3(0.0f, 0.0f, 0.0f);
00045     ray->D = Pcamera;
00046 
00047     /* modify ray for depth of field */
00048     float aperturesize = kernel_data.cam.aperturesize;
00049 
00050     if(aperturesize > 0.0f) {
00051         /* sample point on aperture */
00052         float2 lensuv = camera_sample_aperture(kg, lens_u, lens_v)*aperturesize;
00053 
00054         /* compute point on plane of focus */
00055         float ft = kernel_data.cam.focaldistance/ray->D.z;
00056         float3 Pfocus = ray->P + ray->D*ft;
00057 
00058         /* update ray for effect of lens */
00059         ray->P = make_float3(lensuv.x, lensuv.y, 0.0f);
00060         ray->D = normalize(Pfocus - ray->P);
00061     }
00062 
00063     /* transform ray from camera to world */
00064     Transform cameratoworld = kernel_data.cam.cameratoworld;
00065 
00066     ray->P = transform(&cameratoworld, ray->P);
00067     ray->D = transform_direction(&cameratoworld, ray->D);
00068     ray->D = normalize(ray->D);
00069 
00070 #ifdef __RAY_DIFFERENTIALS__
00071     /* ray differential */
00072     float3 Ddiff = transform_direction(&cameratoworld, Pcamera);
00073 
00074     ray->dP.dx = make_float3(0.0f, 0.0f, 0.0f);
00075     ray->dP.dy = make_float3(0.0f, 0.0f, 0.0f);
00076 
00077     ray->dD.dx = normalize(Ddiff + float4_to_float3(kernel_data.cam.dx)) - normalize(Ddiff);
00078     ray->dD.dy = normalize(Ddiff + float4_to_float3(kernel_data.cam.dy)) - normalize(Ddiff);
00079 #endif
00080 
00081 #ifdef __CAMERA_CLIPPING__
00082     /* clipping */
00083     ray->P += kernel_data.cam.nearclip*ray->D;
00084     ray->t = kernel_data.cam.cliplength;
00085 #else
00086     ray->t = FLT_MAX;
00087 #endif
00088 }
00089 
00090 /* Orthographic Camera */
00091 
00092 __device void camera_sample_orthographic(KernelGlobals *kg, float raster_x, float raster_y, Ray *ray)
00093 {
00094     /* create ray form raster position */
00095     Transform rastertocamera = kernel_data.cam.rastertocamera;
00096     float3 Pcamera = transform(&rastertocamera, make_float3(raster_x, raster_y, 0.0f));
00097 
00098     ray->P = Pcamera;
00099     ray->D = make_float3(0.0f, 0.0f, 1.0f);
00100 
00101     /* transform ray from camera to world */
00102     Transform cameratoworld = kernel_data.cam.cameratoworld;
00103 
00104     ray->P = transform(&cameratoworld, ray->P);
00105     ray->D = transform_direction(&cameratoworld, ray->D);
00106     ray->D = normalize(ray->D);
00107 
00108 #ifdef __RAY_DIFFERENTIALS__
00109     /* ray differential */
00110     ray->dP.dx = float4_to_float3(kernel_data.cam.dx);
00111     ray->dP.dy = float4_to_float3(kernel_data.cam.dy);
00112 
00113     ray->dD.dx = make_float3(0.0f, 0.0f, 0.0f);
00114     ray->dD.dy = make_float3(0.0f, 0.0f, 0.0f);
00115 #endif
00116 
00117 #ifdef __CAMERA_CLIPPING__
00118     /* clipping */
00119     ray->t = kernel_data.cam.cliplength;
00120 #else
00121     ray->t = FLT_MAX;
00122 #endif
00123 }
00124 
00125 /* Common */
00126 
00127 __device void camera_sample(KernelGlobals *kg, int x, int y, float filter_u, float filter_v, float lens_u, float lens_v, Ray *ray)
00128 {
00129     /* pixel filter */
00130     float raster_x = x + kernel_tex_interp(__filter_table, filter_u, FILTER_TABLE_SIZE);
00131     float raster_y = y + kernel_tex_interp(__filter_table, filter_v, FILTER_TABLE_SIZE);
00132 
00133     /* motion blur */
00134     //ray->time = lerp(time_t, kernel_data.cam.shutter_open, kernel_data.cam.shutter_close);
00135 
00136     /* sample */
00137     if(kernel_data.cam.ortho)
00138         camera_sample_orthographic(kg, raster_x, raster_y, ray);
00139     else
00140         camera_sample_perspective(kg, raster_x, raster_y, lens_u, lens_v, ray);
00141 }
00142 
00143 CCL_NAMESPACE_END
00144