Blender V2.61 - r43446

JAMA::Eigenvalue< Real > Class Template Reference

#include <jama_eig.h>

List of all members.

Public Member Functions

 Eigenvalue (const TNT::Array2D< Real > &A)
void getV (TNT::Array2D< Real > &V_)
void getRealEigenvalues (TNT::Array1D< Real > &d_)
void getImagEigenvalues (TNT::Array1D< Real > &e_)
void getD (TNT::Array2D< Real > &D)

Detailed Description

template<class Real>
class JAMA::Eigenvalue< Real >

Computes eigenvalues and eigenvectors of a real (non-complex) matrix.

If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. That is, the diagonal values of D are the eigenvalues, and V*V' = I, where I is the identity matrix. The columns of V represent the eigenvectors in the sense that A*V = V*D.

If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex eigenvalues look like

          u + iv     .        .          .      .    .
            .      u - iv     .          .      .    .
            .        .      a + ib       .      .    .
            .        .        .        a - ib   .    .
            .        .        .          .      x    .
            .        .        .          .      .    y

then D looks like

            u        v        .          .      .    .
           -v        u        .          .      .    . 
            .        .        a          b      .    .
            .        .       -b          a      .    .
            .        .        .          .      x    .
            .        .        .          .      .    y

This keeps V a real matrix in both symmetric and non-symmetric cases, and A*V = V*D.

The matrix V may be badly conditioned, or even singular, so the validity of the equation A = V*D*inverse(V) depends upon the condition number of V.

(Adapted from JAMA, a Java Matrix Library, developed by jointly by the Mathworks and NIST; see http://math.nist.gov/javanumerics/jama).

Definition at line 81 of file jama_eig.h.


Constructor & Destructor Documentation

template<class Real >
JAMA::Eigenvalue< Real >::Eigenvalue ( const TNT::Array2D< Real > &  A) [inline]

Check for symmetry, then construct the eigenvalue decomposition

Parameters:
ASquare real (non-complex) matrix

Definition at line 926 of file jama_eig.h.

References simple_enum_gen::d, TNT::Array2D< T >::dim2(), credits_svn_gen::e, H, i, and V.


Member Function Documentation

template<class Real >
void JAMA::Eigenvalue< Real >::getD ( TNT::Array2D< Real > &  D) [inline]

Computes the block diagonal eigenvalue matrix. If the original matrix A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, a + i*b, in 2-by-2 blocks, [a, b; -b, a]. That is, if the complex eigenvalues look like

          u + iv     .        .          .      .    .
            .      u - iv     .          .      .    .
            .        .      a + ib       .      .    .
            .        .        .        a - ib   .    .
            .        .        .          .      x    .
            .        .        .          .      .    y

then D looks like

            u        v        .          .      .    .
           -v        u        .          .      .    . 
            .        .        a          b      .    .
            .        .       -b          a      .    .
            .        .        .          .      x    .
            .        .        .          .      .    y

This keeps V a real matrix in both symmetric and non-symmetric cases, and A*V = V*D.

Parameters:
D,:upon return, the matrix is filled with the block diagonal eigenvalue matrix.

Definition at line 1033 of file jama_eig.h.

References simple_enum_gen::d, credits_svn_gen::e, and i.

template<class Real >
void JAMA::Eigenvalue< Real >::getImagEigenvalues ( TNT::Array1D< Real > &  e_) [inline]

Return the imaginary parts of the eigenvalues in parameter e_.

e_: new matrix with imaginary parts of the eigenvalues.

Definition at line 994 of file jama_eig.h.

References credits_svn_gen::e.

template<class Real >
void JAMA::Eigenvalue< Real >::getRealEigenvalues ( TNT::Array1D< Real > &  d_) [inline]

Return the real parts of the eigenvalues

Returns:
real(diag(D))

Definition at line 984 of file jama_eig.h.

References simple_enum_gen::d.

template<class Real >
void JAMA::Eigenvalue< Real >::getV ( TNT::Array2D< Real > &  V_) [inline]

Return the eigenvector matrix

Returns:
V

Definition at line 975 of file jama_eig.h.

References V.


The documentation for this class was generated from the following file: