Blender V2.61 - r43446
|
00001 00004 #ifndef JAMA_EIG_H 00005 #define JAMA_EIG_H 00006 00007 00008 #include "tnt_array1d.h" 00009 #include "tnt_array2d.h" 00010 #include "tnt_math_utils.h" 00011 00012 #include <algorithm> 00013 // for min(), max() below 00014 00015 #include <cmath> 00016 // for fabs() below 00017 00018 using namespace TNT; 00019 using namespace std; 00020 00021 // NT debugging 00022 //static int gEigenDebug=0; 00023 //if(gEigenDebug) std::cerr<<"n="<<n<<" m="<<m<<" l="<<l<<"\n"; 00024 // m has to be smaller l! in line 262 00025 // gcc can get confused with abs calls, replaced by fabs 00026 00027 namespace JAMA 00028 { 00029 00080 template <class Real> 00081 class Eigenvalue 00082 { 00083 00084 00086 int n; 00087 00088 int issymmetric; /* boolean*/ 00089 00092 TNT::Array1D<Real> d; /* real part */ 00093 TNT::Array1D<Real> e; /* img part */ 00094 00096 TNT::Array2D<Real> V; 00097 00101 TNT::Array2D<Real> H; 00102 00103 00107 TNT::Array1D<Real> ort; 00108 00109 00110 // Symmetric Householder reduction to tridiagonal form. 00111 00112 void tred2() { 00113 00114 // This is derived from the Algol procedures tred2 by 00115 // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for 00116 // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding 00117 // Fortran subroutine in EISPACK. 00118 00119 for (int j = 0; j < n; j++) { 00120 d[j] = V[n-1][j]; 00121 } 00122 00123 // Householder reduction to tridiagonal form. 00124 00125 for (int i = n-1; i > 0; i--) { 00126 00127 // Scale to avoid under/overflow. 00128 00129 Real scale = 0.0; 00130 Real h = 0.0; 00131 for (int k = 0; k < i; k++) { 00132 scale = scale + fabs(d[k]); 00133 } 00134 if (scale == 0.0) { 00135 e[i] = d[i-1]; 00136 for (int j = 0; j < i; j++) { 00137 d[j] = V[i-1][j]; 00138 V[i][j] = 0.0; 00139 V[j][i] = 0.0; 00140 } 00141 } else { 00142 00143 // Generate Householder vector. 00144 00145 for (int k = 0; k < i; k++) { 00146 d[k] /= scale; 00147 h += d[k] * d[k]; 00148 } 00149 Real f = d[i-1]; 00150 Real g = sqrt(h); 00151 if (f > 0) { 00152 g = -g; 00153 } 00154 e[i] = scale * g; 00155 h = h - f * g; 00156 d[i-1] = f - g; 00157 for (int j = 0; j < i; j++) { 00158 e[j] = 0.0; 00159 } 00160 00161 // Apply similarity transformation to remaining columns. 00162 00163 for (int j = 0; j < i; j++) { 00164 f = d[j]; 00165 V[j][i] = f; 00166 g = e[j] + V[j][j] * f; 00167 for (int k = j+1; k <= i-1; k++) { 00168 g += V[k][j] * d[k]; 00169 e[k] += V[k][j] * f; 00170 } 00171 e[j] = g; 00172 } 00173 f = 0.0; 00174 for (int j = 0; j < i; j++) { 00175 e[j] /= h; 00176 f += e[j] * d[j]; 00177 } 00178 Real hh = f / (h + h); 00179 for (int j = 0; j < i; j++) { 00180 e[j] -= hh * d[j]; 00181 } 00182 for (int j = 0; j < i; j++) { 00183 f = d[j]; 00184 g = e[j]; 00185 for (int k = j; k <= i-1; k++) { 00186 V[k][j] -= (f * e[k] + g * d[k]); 00187 } 00188 d[j] = V[i-1][j]; 00189 V[i][j] = 0.0; 00190 } 00191 } 00192 d[i] = h; 00193 } 00194 00195 // Accumulate transformations. 00196 00197 for (int i = 0; i < n-1; i++) { 00198 V[n-1][i] = V[i][i]; 00199 V[i][i] = 1.0; 00200 Real h = d[i+1]; 00201 if (h != 0.0) { 00202 for (int k = 0; k <= i; k++) { 00203 d[k] = V[k][i+1] / h; 00204 } 00205 for (int j = 0; j <= i; j++) { 00206 Real g = 0.0; 00207 for (int k = 0; k <= i; k++) { 00208 g += V[k][i+1] * V[k][j]; 00209 } 00210 for (int k = 0; k <= i; k++) { 00211 V[k][j] -= g * d[k]; 00212 } 00213 } 00214 } 00215 for (int k = 0; k <= i; k++) { 00216 V[k][i+1] = 0.0; 00217 } 00218 } 00219 for (int j = 0; j < n; j++) { 00220 d[j] = V[n-1][j]; 00221 V[n-1][j] = 0.0; 00222 } 00223 V[n-1][n-1] = 1.0; 00224 e[0] = 0.0; 00225 } 00226 00227 // Symmetric tridiagonal QL algorithm. 00228 00229 void tql2 () { 00230 00231 // This is derived from the Algol procedures tql2, by 00232 // Bowdler, Martin, Reinsch, and Wilkinson, Handbook for 00233 // Auto. Comp., Vol.ii-Linear Algebra, and the corresponding 00234 // Fortran subroutine in EISPACK. 00235 00236 for (int i = 1; i < n; i++) { 00237 e[i-1] = e[i]; 00238 } 00239 e[n-1] = 0.0; 00240 00241 Real f = 0.0; 00242 Real tst1 = 0.0; 00243 Real eps = pow(2.0,-52.0); 00244 for (int l = 0; l < n; l++) { 00245 00246 // Find small subdiagonal element 00247 00248 tst1 = max(tst1,fabs(d[l]) + fabs(e[l])); 00249 int m = l; 00250 00251 // Original while-loop from Java code 00252 while (m < n) { 00253 if (fabs(e[m]) <= eps*tst1) { 00254 break; 00255 } 00256 m++; 00257 } 00258 00259 00260 // If m == l, d[l] is an eigenvalue, 00261 // otherwise, iterate. 00262 00263 if (m > l) { 00264 int iter = 0; 00265 do { 00266 iter = iter + 1; // (Could check iteration count here.) 00267 00268 // Compute implicit shift 00269 00270 Real g = d[l]; 00271 Real p = (d[l+1] - g) / (2.0 * e[l]); 00272 Real r = hypot(p,1.0); 00273 if (p < 0) { 00274 r = -r; 00275 } 00276 d[l] = e[l] / (p + r); 00277 d[l+1] = e[l] * (p + r); 00278 Real dl1 = d[l+1]; 00279 Real h = g - d[l]; 00280 for (int i = l+2; i < n; i++) { 00281 d[i] -= h; 00282 } 00283 f = f + h; 00284 00285 // Implicit QL transformation. 00286 00287 p = d[m]; 00288 Real c = 1.0; 00289 Real c2 = c; 00290 Real c3 = c; 00291 Real el1 = e[l+1]; 00292 Real s = 0.0; 00293 Real s2 = 0.0; 00294 for (int i = m-1; i >= l; i--) { 00295 c3 = c2; 00296 c2 = c; 00297 s2 = s; 00298 g = c * e[i]; 00299 h = c * p; 00300 r = hypot(p,e[i]); 00301 e[i+1] = s * r; 00302 s = e[i] / r; 00303 c = p / r; 00304 p = c * d[i] - s * g; 00305 d[i+1] = h + s * (c * g + s * d[i]); 00306 00307 // Accumulate transformation. 00308 00309 for (int k = 0; k < n; k++) { 00310 h = V[k][i+1]; 00311 V[k][i+1] = s * V[k][i] + c * h; 00312 V[k][i] = c * V[k][i] - s * h; 00313 } 00314 } 00315 p = -s * s2 * c3 * el1 * e[l] / dl1; 00316 e[l] = s * p; 00317 d[l] = c * p; 00318 00319 // Check for convergence. 00320 00321 } while (fabs(e[l]) > eps*tst1); 00322 } 00323 d[l] = d[l] + f; 00324 e[l] = 0.0; 00325 } 00326 00327 // Sort eigenvalues and corresponding vectors. 00328 00329 for (int i = 0; i < n-1; i++) { 00330 int k = i; 00331 Real p = d[i]; 00332 for (int j = i+1; j < n; j++) { 00333 if (d[j] < p) { 00334 k = j; 00335 p = d[j]; 00336 } 00337 } 00338 if (k != i) { 00339 d[k] = d[i]; 00340 d[i] = p; 00341 for (int j = 0; j < n; j++) { 00342 p = V[j][i]; 00343 V[j][i] = V[j][k]; 00344 V[j][k] = p; 00345 } 00346 } 00347 } 00348 } 00349 00350 // Nonsymmetric reduction to Hessenberg form. 00351 00352 void orthes () { 00353 00354 // This is derived from the Algol procedures orthes and ortran, 00355 // by Martin and Wilkinson, Handbook for Auto. Comp., 00356 // Vol.ii-Linear Algebra, and the corresponding 00357 // Fortran subroutines in EISPACK. 00358 00359 int low = 0; 00360 int high = n-1; 00361 00362 for (int m = low+1; m <= high-1; m++) { 00363 00364 // Scale column. 00365 00366 Real scale = 0.0; 00367 for (int i = m; i <= high; i++) { 00368 scale = scale + fabs(H[i][m-1]); 00369 } 00370 if (scale != 0.0) { 00371 00372 // Compute Householder transformation. 00373 00374 Real h = 0.0; 00375 for (int i = high; i >= m; i--) { 00376 ort[i] = H[i][m-1]/scale; 00377 h += ort[i] * ort[i]; 00378 } 00379 Real g = sqrt(h); 00380 if (ort[m] > 0) { 00381 g = -g; 00382 } 00383 h = h - ort[m] * g; 00384 ort[m] = ort[m] - g; 00385 00386 // Apply Householder similarity transformation 00387 // H = (I-u*u'/h)*H*(I-u*u')/h) 00388 00389 for (int j = m; j < n; j++) { 00390 Real f = 0.0; 00391 for (int i = high; i >= m; i--) { 00392 f += ort[i]*H[i][j]; 00393 } 00394 f = f/h; 00395 for (int i = m; i <= high; i++) { 00396 H[i][j] -= f*ort[i]; 00397 } 00398 } 00399 00400 for (int i = 0; i <= high; i++) { 00401 Real f = 0.0; 00402 for (int j = high; j >= m; j--) { 00403 f += ort[j]*H[i][j]; 00404 } 00405 f = f/h; 00406 for (int j = m; j <= high; j++) { 00407 H[i][j] -= f*ort[j]; 00408 } 00409 } 00410 ort[m] = scale*ort[m]; 00411 H[m][m-1] = scale*g; 00412 } 00413 } 00414 00415 // Accumulate transformations (Algol's ortran). 00416 00417 for (int i = 0; i < n; i++) { 00418 for (int j = 0; j < n; j++) { 00419 V[i][j] = (i == j ? 1.0 : 0.0); 00420 } 00421 } 00422 00423 for (int m = high-1; m >= low+1; m--) { 00424 if (H[m][m-1] != 0.0) { 00425 for (int i = m+1; i <= high; i++) { 00426 ort[i] = H[i][m-1]; 00427 } 00428 for (int j = m; j <= high; j++) { 00429 Real g = 0.0; 00430 for (int i = m; i <= high; i++) { 00431 g += ort[i] * V[i][j]; 00432 } 00433 // Double division avoids possible underflow 00434 g = (g / ort[m]) / H[m][m-1]; 00435 for (int i = m; i <= high; i++) { 00436 V[i][j] += g * ort[i]; 00437 } 00438 } 00439 } 00440 } 00441 } 00442 00443 00444 // Complex scalar division. 00445 00446 Real cdivr, cdivi; 00447 void cdiv(Real xr, Real xi, Real yr, Real yi) { 00448 Real r,d; 00449 if (fabs(yr) > fabs(yi)) { 00450 r = yi/yr; 00451 d = yr + r*yi; 00452 cdivr = (xr + r*xi)/d; 00453 cdivi = (xi - r*xr)/d; 00454 } else { 00455 r = yr/yi; 00456 d = yi + r*yr; 00457 cdivr = (r*xr + xi)/d; 00458 cdivi = (r*xi - xr)/d; 00459 } 00460 } 00461 00462 00463 // Nonsymmetric reduction from Hessenberg to real Schur form. 00464 00465 void hqr2 () { 00466 00467 // This is derived from the Algol procedure hqr2, 00468 // by Martin and Wilkinson, Handbook for Auto. Comp., 00469 // Vol.ii-Linear Algebra, and the corresponding 00470 // Fortran subroutine in EISPACK. 00471 00472 // Initialize 00473 00474 int nn = this->n; 00475 int n = nn-1; 00476 int low = 0; 00477 int high = nn-1; 00478 Real eps = pow(2.0,-52.0); 00479 Real exshift = 0.0; 00480 Real p=0,q=0,r=0,s=0,z=0,t,w,x,y; 00481 00482 // Store roots isolated by balanc and compute matrix norm 00483 00484 Real norm = 0.0; 00485 for (int i = 0; i < nn; i++) { 00486 if ((i < low) || (i > high)) { 00487 d[i] = H[i][i]; 00488 e[i] = 0.0; 00489 } 00490 for (int j = max(i-1,0); j < nn; j++) { 00491 norm = norm + fabs(H[i][j]); 00492 } 00493 } 00494 00495 // Outer loop over eigenvalue index 00496 00497 int iter = 0; 00498 int totIter = 0; 00499 while (n >= low) { 00500 00501 // NT limit no. of iterations 00502 totIter++; 00503 if(totIter>100) { 00504 //if(totIter>15) std::cout<<"!!!!iter ABORT !!!!!!! "<<totIter<<"\n"; 00505 // NT hack/fix, return large eigenvalues 00506 for (int i = 0; i < nn; i++) { 00507 d[i] = 10000.; 00508 e[i] = 10000.; 00509 } 00510 return; 00511 } 00512 00513 // Look for single small sub-diagonal element 00514 00515 int l = n; 00516 while (l > low) { 00517 s = fabs(H[l-1][l-1]) + fabs(H[l][l]); 00518 if (s == 0.0) { 00519 s = norm; 00520 } 00521 if (fabs(H[l][l-1]) < eps * s) { 00522 break; 00523 } 00524 l--; 00525 } 00526 00527 // Check for convergence 00528 // One root found 00529 00530 if (l == n) { 00531 H[n][n] = H[n][n] + exshift; 00532 d[n] = H[n][n]; 00533 e[n] = 0.0; 00534 n--; 00535 iter = 0; 00536 00537 // Two roots found 00538 00539 } else if (l == n-1) { 00540 w = H[n][n-1] * H[n-1][n]; 00541 p = (H[n-1][n-1] - H[n][n]) / 2.0; 00542 q = p * p + w; 00543 z = sqrt(fabs(q)); 00544 H[n][n] = H[n][n] + exshift; 00545 H[n-1][n-1] = H[n-1][n-1] + exshift; 00546 x = H[n][n]; 00547 00548 // Real pair 00549 00550 if (q >= 0) { 00551 if (p >= 0) { 00552 z = p + z; 00553 } else { 00554 z = p - z; 00555 } 00556 d[n-1] = x + z; 00557 d[n] = d[n-1]; 00558 if (z != 0.0) { 00559 d[n] = x - w / z; 00560 } 00561 e[n-1] = 0.0; 00562 e[n] = 0.0; 00563 x = H[n][n-1]; 00564 s = fabs(x) + fabs(z); 00565 p = x / s; 00566 q = z / s; 00567 r = sqrt(p * p+q * q); 00568 p = p / r; 00569 q = q / r; 00570 00571 // Row modification 00572 00573 for (int j = n-1; j < nn; j++) { 00574 z = H[n-1][j]; 00575 H[n-1][j] = q * z + p * H[n][j]; 00576 H[n][j] = q * H[n][j] - p * z; 00577 } 00578 00579 // Column modification 00580 00581 for (int i = 0; i <= n; i++) { 00582 z = H[i][n-1]; 00583 H[i][n-1] = q * z + p * H[i][n]; 00584 H[i][n] = q * H[i][n] - p * z; 00585 } 00586 00587 // Accumulate transformations 00588 00589 for (int i = low; i <= high; i++) { 00590 z = V[i][n-1]; 00591 V[i][n-1] = q * z + p * V[i][n]; 00592 V[i][n] = q * V[i][n] - p * z; 00593 } 00594 00595 // Complex pair 00596 00597 } else { 00598 d[n-1] = x + p; 00599 d[n] = x + p; 00600 e[n-1] = z; 00601 e[n] = -z; 00602 } 00603 n = n - 2; 00604 iter = 0; 00605 00606 // No convergence yet 00607 00608 } else { 00609 00610 // Form shift 00611 00612 x = H[n][n]; 00613 y = 0.0; 00614 w = 0.0; 00615 if (l < n) { 00616 y = H[n-1][n-1]; 00617 w = H[n][n-1] * H[n-1][n]; 00618 } 00619 00620 // Wilkinson's original ad hoc shift 00621 00622 if (iter == 10) { 00623 exshift += x; 00624 for (int i = low; i <= n; i++) { 00625 H[i][i] -= x; 00626 } 00627 s = fabs(H[n][n-1]) + fabs(H[n-1][n-2]); 00628 x = y = 0.75 * s; 00629 w = -0.4375 * s * s; 00630 } 00631 00632 // MATLAB's new ad hoc shift 00633 00634 if (iter == 30) { 00635 s = (y - x) / 2.0; 00636 s = s * s + w; 00637 if (s > 0) { 00638 s = sqrt(s); 00639 if (y < x) { 00640 s = -s; 00641 } 00642 s = x - w / ((y - x) / 2.0 + s); 00643 for (int i = low; i <= n; i++) { 00644 H[i][i] -= s; 00645 } 00646 exshift += s; 00647 x = y = w = 0.964; 00648 } 00649 } 00650 00651 iter = iter + 1; // (Could check iteration count here.) 00652 00653 // Look for two consecutive small sub-diagonal elements 00654 00655 int m = n-2; 00656 while (m >= l) { 00657 z = H[m][m]; 00658 r = x - z; 00659 s = y - z; 00660 p = (r * s - w) / H[m+1][m] + H[m][m+1]; 00661 q = H[m+1][m+1] - z - r - s; 00662 r = H[m+2][m+1]; 00663 s = fabs(p) + fabs(q) + fabs(r); 00664 p = p / s; 00665 q = q / s; 00666 r = r / s; 00667 if (m == l) { 00668 break; 00669 } 00670 if (fabs(H[m][m-1]) * (fabs(q) + fabs(r)) < 00671 eps * (fabs(p) * (fabs(H[m-1][m-1]) + fabs(z) + 00672 fabs(H[m+1][m+1])))) { 00673 break; 00674 } 00675 m--; 00676 } 00677 00678 for (int i = m+2; i <= n; i++) { 00679 H[i][i-2] = 0.0; 00680 if (i > m+2) { 00681 H[i][i-3] = 0.0; 00682 } 00683 } 00684 00685 // Double QR step involving rows l:n and columns m:n 00686 00687 for (int k = m; k <= n-1; k++) { 00688 int notlast = (k != n-1); 00689 if (k != m) { 00690 p = H[k][k-1]; 00691 q = H[k+1][k-1]; 00692 r = (notlast ? H[k+2][k-1] : 0.0); 00693 x = fabs(p) + fabs(q) + fabs(r); 00694 if (x != 0.0) { 00695 p = p / x; 00696 q = q / x; 00697 r = r / x; 00698 } 00699 } 00700 if (x == 0.0) { 00701 break; 00702 } 00703 s = sqrt(p * p + q * q + r * r); 00704 if (p < 0) { 00705 s = -s; 00706 } 00707 if (s != 0) { 00708 if (k != m) { 00709 H[k][k-1] = -s * x; 00710 } else if (l != m) { 00711 H[k][k-1] = -H[k][k-1]; 00712 } 00713 p = p + s; 00714 x = p / s; 00715 y = q / s; 00716 z = r / s; 00717 q = q / p; 00718 r = r / p; 00719 00720 // Row modification 00721 00722 for (int j = k; j < nn; j++) { 00723 p = H[k][j] + q * H[k+1][j]; 00724 if (notlast) { 00725 p = p + r * H[k+2][j]; 00726 H[k+2][j] = H[k+2][j] - p * z; 00727 } 00728 H[k][j] = H[k][j] - p * x; 00729 H[k+1][j] = H[k+1][j] - p * y; 00730 } 00731 00732 // Column modification 00733 00734 for (int i = 0; i <= min(n,k+3); i++) { 00735 p = x * H[i][k] + y * H[i][k+1]; 00736 if (notlast) { 00737 p = p + z * H[i][k+2]; 00738 H[i][k+2] = H[i][k+2] - p * r; 00739 } 00740 H[i][k] = H[i][k] - p; 00741 H[i][k+1] = H[i][k+1] - p * q; 00742 } 00743 00744 // Accumulate transformations 00745 00746 for (int i = low; i <= high; i++) { 00747 p = x * V[i][k] + y * V[i][k+1]; 00748 if (notlast) { 00749 p = p + z * V[i][k+2]; 00750 V[i][k+2] = V[i][k+2] - p * r; 00751 } 00752 V[i][k] = V[i][k] - p; 00753 V[i][k+1] = V[i][k+1] - p * q; 00754 } 00755 } // (s != 0) 00756 } // k loop 00757 } // check convergence 00758 } // while (n >= low) 00759 //if(totIter>15) std::cout<<"!!!!iter "<<totIter<<"\n"; 00760 00761 // Backsubstitute to find vectors of upper triangular form 00762 00763 if (norm == 0.0) { 00764 return; 00765 } 00766 00767 for (n = nn-1; n >= 0; n--) { 00768 p = d[n]; 00769 q = e[n]; 00770 00771 // Real vector 00772 00773 if (q == 0) { 00774 int l = n; 00775 H[n][n] = 1.0; 00776 for (int i = n-1; i >= 0; i--) { 00777 w = H[i][i] - p; 00778 r = 0.0; 00779 for (int j = l; j <= n; j++) { 00780 r = r + H[i][j] * H[j][n]; 00781 } 00782 if (e[i] < 0.0) { 00783 z = w; 00784 s = r; 00785 } else { 00786 l = i; 00787 if (e[i] == 0.0) { 00788 if (w != 0.0) { 00789 H[i][n] = -r / w; 00790 } else { 00791 H[i][n] = -r / (eps * norm); 00792 } 00793 00794 // Solve real equations 00795 00796 } else { 00797 x = H[i][i+1]; 00798 y = H[i+1][i]; 00799 q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; 00800 t = (x * s - z * r) / q; 00801 H[i][n] = t; 00802 if (fabs(x) > fabs(z)) { 00803 H[i+1][n] = (-r - w * t) / x; 00804 } else { 00805 H[i+1][n] = (-s - y * t) / z; 00806 } 00807 } 00808 00809 // Overflow control 00810 00811 t = fabs(H[i][n]); 00812 if ((eps * t) * t > 1) { 00813 for (int j = i; j <= n; j++) { 00814 H[j][n] = H[j][n] / t; 00815 } 00816 } 00817 } 00818 } 00819 00820 // Complex vector 00821 00822 } else if (q < 0) { 00823 int l = n-1; 00824 00825 // Last vector component imaginary so matrix is triangular 00826 00827 if (fabs(H[n][n-1]) > fabs(H[n-1][n])) { 00828 H[n-1][n-1] = q / H[n][n-1]; 00829 H[n-1][n] = -(H[n][n] - p) / H[n][n-1]; 00830 } else { 00831 cdiv(0.0,-H[n-1][n],H[n-1][n-1]-p,q); 00832 H[n-1][n-1] = cdivr; 00833 H[n-1][n] = cdivi; 00834 } 00835 H[n][n-1] = 0.0; 00836 H[n][n] = 1.0; 00837 for (int i = n-2; i >= 0; i--) { 00838 Real ra,sa,vr,vi; 00839 ra = 0.0; 00840 sa = 0.0; 00841 for (int j = l; j <= n; j++) { 00842 ra = ra + H[i][j] * H[j][n-1]; 00843 sa = sa + H[i][j] * H[j][n]; 00844 } 00845 w = H[i][i] - p; 00846 00847 if (e[i] < 0.0) { 00848 z = w; 00849 r = ra; 00850 s = sa; 00851 } else { 00852 l = i; 00853 if (e[i] == 0) { 00854 cdiv(-ra,-sa,w,q); 00855 H[i][n-1] = cdivr; 00856 H[i][n] = cdivi; 00857 } else { 00858 00859 // Solve complex equations 00860 00861 x = H[i][i+1]; 00862 y = H[i+1][i]; 00863 vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; 00864 vi = (d[i] - p) * 2.0 * q; 00865 if ((vr == 0.0) && (vi == 0.0)) { 00866 vr = eps * norm * (fabs(w) + fabs(q) + 00867 fabs(x) + fabs(y) + fabs(z)); 00868 } 00869 cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi); 00870 H[i][n-1] = cdivr; 00871 H[i][n] = cdivi; 00872 if (fabs(x) > (fabs(z) + fabs(q))) { 00873 H[i+1][n-1] = (-ra - w * H[i][n-1] + q * H[i][n]) / x; 00874 H[i+1][n] = (-sa - w * H[i][n] - q * H[i][n-1]) / x; 00875 } else { 00876 cdiv(-r-y*H[i][n-1],-s-y*H[i][n],z,q); 00877 H[i+1][n-1] = cdivr; 00878 H[i+1][n] = cdivi; 00879 } 00880 } 00881 00882 // Overflow control 00883 00884 t = max(fabs(H[i][n-1]),fabs(H[i][n])); 00885 if ((eps * t) * t > 1) { 00886 for (int j = i; j <= n; j++) { 00887 H[j][n-1] = H[j][n-1] / t; 00888 H[j][n] = H[j][n] / t; 00889 } 00890 } 00891 } 00892 } 00893 } 00894 } 00895 00896 // Vectors of isolated roots 00897 00898 for (int i = 0; i < nn; i++) { 00899 if (i < low || i > high) { 00900 for (int j = i; j < nn; j++) { 00901 V[i][j] = H[i][j]; 00902 } 00903 } 00904 } 00905 00906 // Back transformation to get eigenvectors of original matrix 00907 00908 for (int j = nn-1; j >= low; j--) { 00909 for (int i = low; i <= high; i++) { 00910 z = 0.0; 00911 for (int k = low; k <= min(j,high); k++) { 00912 z = z + V[i][k] * H[k][j]; 00913 } 00914 V[i][j] = z; 00915 } 00916 } 00917 } 00918 00919 public: 00920 00921 00926 Eigenvalue(const TNT::Array2D<Real> &A) { 00927 n = A.dim2(); 00928 V = Array2D<Real>(n,n); 00929 d = Array1D<Real>(n); 00930 e = Array1D<Real>(n); 00931 00932 issymmetric = 1; 00933 for (int j = 0; (j < n) && issymmetric; j++) { 00934 for (int i = 0; (i < n) && issymmetric; i++) { 00935 issymmetric = (A[i][j] == A[j][i]); 00936 } 00937 } 00938 00939 if (issymmetric) { 00940 for (int i = 0; i < n; i++) { 00941 for (int j = 0; j < n; j++) { 00942 V[i][j] = A[i][j]; 00943 } 00944 } 00945 00946 // Tridiagonalize. 00947 tred2(); 00948 00949 // Diagonalize. 00950 tql2(); 00951 00952 } else { 00953 H = TNT::Array2D<Real>(n,n); 00954 ort = TNT::Array1D<Real>(n); 00955 00956 for (int j = 0; j < n; j++) { 00957 for (int i = 0; i < n; i++) { 00958 H[i][j] = A[i][j]; 00959 } 00960 } 00961 00962 // Reduce to Hessenberg form. 00963 orthes(); 00964 00965 // Reduce Hessenberg to real Schur form. 00966 hqr2(); 00967 } 00968 } 00969 00970 00975 void getV (TNT::Array2D<Real> &V_) { 00976 V_ = V; 00977 return; 00978 } 00979 00984 void getRealEigenvalues (TNT::Array1D<Real> &d_) { 00985 d_ = d; 00986 return ; 00987 } 00988 00994 void getImagEigenvalues (TNT::Array1D<Real> &e_) { 00995 e_ = e; 00996 return; 00997 } 00998 00999 01033 void getD (TNT::Array2D<Real> &D) { 01034 D = Array2D<Real>(n,n); 01035 for (int i = 0; i < n; i++) { 01036 for (int j = 0; j < n; j++) { 01037 D[i][j] = 0.0; 01038 } 01039 D[i][i] = d[i]; 01040 if (e[i] > 0) { 01041 D[i][i+1] = e[i]; 01042 } else if (e[i] < 0) { 01043 D[i][i-1] = e[i]; 01044 } 01045 } 01046 } 01047 }; 01048 01049 } //namespace JAMA 01050 01051 01052 #endif 01053 // JAMA_EIG_H