Blender V2.61 - r43446
|
00001 /* 00002 * ***** BEGIN GPL LICENSE BLOCK ***** 00003 * 00004 * This program is free software; you can redistribute it and/or 00005 * modify it under the terms of the GNU General Public License 00006 * as published by the Free Software Foundation; either version 2 00007 * of the License, or (at your option) any later version. 00008 * 00009 * This program is distributed in the hope that it will be useful, 00010 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00011 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00012 * GNU General Public License for more details. 00013 * 00014 * You should have received a copy of the GNU General Public License 00015 * along with this program; if not, write to the Free Software Foundation, 00016 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 00017 * 00018 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. 00019 * All rights reserved. 00020 * 00021 * The Original Code is: all of this file. 00022 * 00023 * Contributor(s): none yet. 00024 * 00025 * ***** END GPL LICENSE BLOCK ***** 00026 */ 00027 00033 #include <math.h> // floor 00034 #include <string.h> 00035 #include <stdlib.h> 00036 00037 #include "MEM_guardedalloc.h" 00038 00039 #include "BLI_bpath.h" 00040 #include "BLI_blenlib.h" 00041 #include "BLI_math.h" 00042 #include "BLI_utildefines.h" 00043 #include "BLI_ghash.h" 00044 00045 #include "DNA_curve_types.h" 00046 #include "DNA_material_types.h" 00047 00048 /* for dereferencing pointers */ 00049 #include "DNA_key_types.h" 00050 #include "DNA_scene_types.h" 00051 #include "DNA_vfont_types.h" 00052 #include "DNA_object_types.h" 00053 00054 #include "BKE_animsys.h" 00055 #include "BKE_anim.h" 00056 #include "BKE_curve.h" 00057 #include "BKE_displist.h" 00058 #include "BKE_font.h" 00059 #include "BKE_global.h" 00060 #include "BKE_key.h" 00061 #include "BKE_library.h" 00062 #include "BKE_main.h" 00063 #include "BKE_object.h" 00064 #include "BKE_material.h" 00065 00066 /* globals */ 00067 00068 /* local */ 00069 static int cu_isectLL(float *v1, float *v2, float *v3, float *v4, 00070 short cox, short coy, 00071 float *labda, float *mu, float *vec); 00072 00073 void unlink_curve(Curve *cu) 00074 { 00075 int a; 00076 00077 for(a=0; a<cu->totcol; a++) { 00078 if(cu->mat[a]) cu->mat[a]->id.us--; 00079 cu->mat[a]= NULL; 00080 } 00081 if(cu->vfont) cu->vfont->id.us--; 00082 cu->vfont= NULL; 00083 00084 if(cu->vfontb) cu->vfontb->id.us--; 00085 cu->vfontb= NULL; 00086 00087 if(cu->vfonti) cu->vfonti->id.us--; 00088 cu->vfonti= NULL; 00089 00090 if(cu->vfontbi) cu->vfontbi->id.us--; 00091 cu->vfontbi= NULL; 00092 00093 if(cu->key) cu->key->id.us--; 00094 cu->key= NULL; 00095 } 00096 00097 /* frees editcurve entirely */ 00098 void BKE_free_editfont(Curve *cu) 00099 { 00100 if(cu->editfont) { 00101 EditFont *ef= cu->editfont; 00102 00103 if(ef->oldstr) MEM_freeN(ef->oldstr); 00104 if(ef->oldstrinfo) MEM_freeN(ef->oldstrinfo); 00105 if(ef->textbuf) MEM_freeN(ef->textbuf); 00106 if(ef->textbufinfo) MEM_freeN(ef->textbufinfo); 00107 if(ef->copybuf) MEM_freeN(ef->copybuf); 00108 if(ef->copybufinfo) MEM_freeN(ef->copybufinfo); 00109 00110 MEM_freeN(ef); 00111 cu->editfont= NULL; 00112 } 00113 } 00114 00115 void free_curve_editNurb_keyIndex(EditNurb *editnurb) 00116 { 00117 if (!editnurb->keyindex) { 00118 return; 00119 } 00120 BLI_ghash_free(editnurb->keyindex, NULL, (GHashValFreeFP)MEM_freeN); 00121 editnurb->keyindex= NULL; 00122 } 00123 00124 void free_curve_editNurb (Curve *cu) 00125 { 00126 if(cu->editnurb) { 00127 freeNurblist(&cu->editnurb->nurbs); 00128 free_curve_editNurb_keyIndex(cu->editnurb); 00129 MEM_freeN(cu->editnurb); 00130 cu->editnurb= NULL; 00131 } 00132 } 00133 00134 /* don't free curve itself */ 00135 void free_curve(Curve *cu) 00136 { 00137 freeNurblist(&cu->nurb); 00138 BLI_freelistN(&cu->bev); 00139 freedisplist(&cu->disp); 00140 BKE_free_editfont(cu); 00141 00142 free_curve_editNurb(cu); 00143 unlink_curve(cu); 00144 BKE_free_animdata((ID *)cu); 00145 00146 if(cu->mat) MEM_freeN(cu->mat); 00147 if(cu->str) MEM_freeN(cu->str); 00148 if(cu->strinfo) MEM_freeN(cu->strinfo); 00149 if(cu->bb) MEM_freeN(cu->bb); 00150 if(cu->path) free_path(cu->path); 00151 if(cu->tb) MEM_freeN(cu->tb); 00152 } 00153 00154 Curve *add_curve(const char *name, int type) 00155 { 00156 Curve *cu; 00157 00158 cu= alloc_libblock(&G.main->curve, ID_CU, name); 00159 00160 cu->size[0]= cu->size[1]= cu->size[2]= 1.0; 00161 cu->flag= CU_FRONT|CU_BACK|CU_DEFORM_BOUNDS_OFF|CU_PATH_RADIUS; 00162 cu->pathlen= 100; 00163 cu->resolu= cu->resolv= (type == OB_SURF) ? 4 : 12; 00164 cu->width= 1.0; 00165 cu->wordspace = 1.0; 00166 cu->spacing= cu->linedist= 1.0; 00167 cu->fsize= 1.0; 00168 cu->ulheight = 0.05; 00169 cu->texflag= CU_AUTOSPACE; 00170 cu->smallcaps_scale= 0.75f; 00171 cu->twist_mode= CU_TWIST_MINIMUM; // XXX: this one seems to be the best one in most cases, at least for curve deform... 00172 cu->type= type; 00173 00174 cu->bb= unit_boundbox(); 00175 00176 if(type==OB_FONT) { 00177 cu->vfont= cu->vfontb= cu->vfonti= cu->vfontbi= get_builtin_font(); 00178 cu->vfont->id.us+=4; 00179 cu->str= MEM_mallocN(12, "str"); 00180 BLI_strncpy(cu->str, "Text", 12); 00181 cu->len= cu->pos= 4; 00182 cu->strinfo= MEM_callocN(12*sizeof(CharInfo), "strinfo new"); 00183 cu->totbox= cu->actbox= 1; 00184 cu->tb= MEM_callocN(MAXTEXTBOX*sizeof(TextBox), "textbox"); 00185 cu->tb[0].w = cu->tb[0].h = 0.0; 00186 } 00187 00188 return cu; 00189 } 00190 00191 Curve *copy_curve(Curve *cu) 00192 { 00193 Curve *cun; 00194 int a; 00195 00196 cun= copy_libblock(&cu->id); 00197 cun->nurb.first= cun->nurb.last= NULL; 00198 duplicateNurblist( &(cun->nurb), &(cu->nurb)); 00199 00200 cun->mat= MEM_dupallocN(cu->mat); 00201 for(a=0; a<cun->totcol; a++) { 00202 id_us_plus((ID *)cun->mat[a]); 00203 } 00204 00205 cun->str= MEM_dupallocN(cu->str); 00206 cun->strinfo= MEM_dupallocN(cu->strinfo); 00207 cun->tb= MEM_dupallocN(cu->tb); 00208 cun->bb= MEM_dupallocN(cu->bb); 00209 00210 cun->key= copy_key(cu->key); 00211 if(cun->key) cun->key->from= (ID *)cun; 00212 00213 cun->disp.first= cun->disp.last= NULL; 00214 cun->bev.first= cun->bev.last= NULL; 00215 cun->path= NULL; 00216 00217 cun->editnurb= NULL; 00218 cun->editfont= NULL; 00219 cun->selboxes= NULL; 00220 00221 #if 0 // XXX old animation system 00222 /* single user ipo too */ 00223 if(cun->ipo) cun->ipo= copy_ipo(cun->ipo); 00224 #endif // XXX old animation system 00225 00226 id_us_plus((ID *)cun->vfont); 00227 id_us_plus((ID *)cun->vfontb); 00228 id_us_plus((ID *)cun->vfonti); 00229 id_us_plus((ID *)cun->vfontbi); 00230 00231 return cun; 00232 } 00233 00234 static void extern_local_curve(Curve *cu) 00235 { 00236 id_lib_extern((ID *)cu->vfont); 00237 id_lib_extern((ID *)cu->vfontb); 00238 id_lib_extern((ID *)cu->vfonti); 00239 id_lib_extern((ID *)cu->vfontbi); 00240 00241 if(cu->mat) { 00242 extern_local_matarar(cu->mat, cu->totcol); 00243 } 00244 } 00245 00246 void make_local_curve(Curve *cu) 00247 { 00248 Main *bmain= G.main; 00249 Object *ob; 00250 int is_local= FALSE, is_lib= FALSE; 00251 00252 /* - when there are only lib users: don't do 00253 * - when there are only local users: set flag 00254 * - mixed: do a copy 00255 */ 00256 00257 if(cu->id.lib==NULL) return; 00258 00259 if(cu->id.us==1) { 00260 id_clear_lib_data(bmain, &cu->id); 00261 extern_local_curve(cu); 00262 return; 00263 } 00264 00265 for(ob= bmain->object.first; ob && ELEM(0, is_lib, is_local); ob= ob->id.next) { 00266 if(ob->data == cu) { 00267 if(ob->id.lib) is_lib= TRUE; 00268 else is_local= TRUE; 00269 } 00270 } 00271 00272 if(is_local && is_lib == FALSE) { 00273 id_clear_lib_data(bmain, &cu->id); 00274 extern_local_curve(cu); 00275 } 00276 else if(is_local && is_lib) { 00277 Curve *cu_new= copy_curve(cu); 00278 cu_new->id.us= 0; 00279 00280 BKE_id_lib_local_paths(bmain, cu->id.lib, &cu_new->id); 00281 00282 for(ob= bmain->object.first; ob; ob= ob->id.next) { 00283 if(ob->data==cu) { 00284 if(ob->id.lib==NULL) { 00285 ob->data= cu_new; 00286 cu_new->id.us++; 00287 cu->id.us--; 00288 } 00289 } 00290 } 00291 } 00292 } 00293 00294 /* Get list of nurbs from editnurbs structure */ 00295 ListBase *curve_editnurbs(Curve *cu) 00296 { 00297 if (cu->editnurb) { 00298 return &cu->editnurb->nurbs; 00299 } 00300 00301 return NULL; 00302 } 00303 00304 short curve_type(Curve *cu) 00305 { 00306 Nurb *nu; 00307 int type= cu->type; 00308 00309 if(cu->vfont) { 00310 return OB_FONT; 00311 } 00312 00313 if(!cu->type) { 00314 type= OB_CURVE; 00315 00316 for (nu= cu->nurb.first; nu; nu= nu->next) { 00317 if(nu->pntsv>1) { 00318 type= OB_SURF; 00319 } 00320 } 00321 } 00322 00323 return type; 00324 } 00325 00326 void update_curve_dimension(Curve *cu) 00327 { 00328 ListBase *nurbs= BKE_curve_nurbs(cu); 00329 Nurb *nu= nurbs->first; 00330 00331 if(cu->flag&CU_3D) { 00332 for( ; nu; nu= nu->next) { 00333 nu->flag &= ~CU_2D; 00334 } 00335 } 00336 else { 00337 for( ; nu; nu= nu->next) { 00338 nu->flag |= CU_2D; 00339 test2DNurb(nu); 00340 00341 /* since the handles are moved they need to be auto-located again */ 00342 if(nu->type == CU_BEZIER) 00343 calchandlesNurb(nu); 00344 } 00345 } 00346 } 00347 00348 void test_curve_type(Object *ob) 00349 { 00350 ob->type= curve_type(ob->data); 00351 00352 if(ob->type==OB_CURVE) 00353 update_curve_dimension((Curve *)ob->data); 00354 } 00355 00356 void tex_space_curve(Curve *cu) 00357 { 00358 DispList *dl; 00359 BoundBox *bb; 00360 float *fp, min[3], max[3]; 00361 int tot, doit= 0; 00362 00363 if(cu->bb==NULL) cu->bb= MEM_callocN(sizeof(BoundBox), "boundbox"); 00364 bb= cu->bb; 00365 00366 INIT_MINMAX(min, max); 00367 00368 dl= cu->disp.first; 00369 while(dl) { 00370 00371 if(dl->type==DL_INDEX3 || dl->type==DL_INDEX3) tot= dl->nr; 00372 else tot= dl->nr*dl->parts; 00373 00374 if(tot) doit= 1; 00375 fp= dl->verts; 00376 while(tot--) { 00377 DO_MINMAX(fp, min, max); 00378 fp += 3; 00379 } 00380 dl= dl->next; 00381 } 00382 00383 if(!doit) { 00384 min[0] = min[1] = min[2] = -1.0f; 00385 max[0] = max[1] = max[2] = 1.0f; 00386 } 00387 00388 boundbox_set_from_min_max(bb, min, max); 00389 00390 if(cu->texflag & CU_AUTOSPACE) { 00391 mid_v3_v3v3(cu->loc, min, max); 00392 cu->size[0]= (max[0]-min[0])/2.0f; 00393 cu->size[1]= (max[1]-min[1])/2.0f; 00394 cu->size[2]= (max[2]-min[2])/2.0f; 00395 00396 cu->rot[0]= cu->rot[1]= cu->rot[2]= 0.0f; 00397 00398 if(cu->size[0]==0.0f) cu->size[0]= 1.0f; 00399 else if(cu->size[0]>0.0f && cu->size[0]<0.00001f) cu->size[0]= 0.00001f; 00400 else if(cu->size[0]<0.0f && cu->size[0]> -0.00001f) cu->size[0]= -0.00001f; 00401 00402 if(cu->size[1]==0.0f) cu->size[1]= 1.0f; 00403 else if(cu->size[1]>0.0f && cu->size[1]<0.00001f) cu->size[1]= 0.00001f; 00404 else if(cu->size[1]<0.0f && cu->size[1]> -0.00001f) cu->size[1]= -0.00001f; 00405 00406 if(cu->size[2]==0.0f) cu->size[2]= 1.0f; 00407 else if(cu->size[2]>0.0f && cu->size[2]<0.00001f) cu->size[2]= 0.00001f; 00408 else if(cu->size[2]<0.0f && cu->size[2]> -0.00001f) cu->size[2]= -0.00001f; 00409 00410 } 00411 } 00412 00413 int count_curveverts(ListBase *nurb) 00414 { 00415 Nurb *nu; 00416 int tot=0; 00417 00418 nu= nurb->first; 00419 while(nu) { 00420 if(nu->bezt) tot+= 3*nu->pntsu; 00421 else if(nu->bp) tot+= nu->pntsu*nu->pntsv; 00422 00423 nu= nu->next; 00424 } 00425 return tot; 00426 } 00427 00428 int count_curveverts_without_handles(ListBase *nurb) 00429 { 00430 Nurb *nu; 00431 int tot=0; 00432 00433 nu= nurb->first; 00434 while(nu) { 00435 if(nu->bezt) tot+= nu->pntsu; 00436 else if(nu->bp) tot+= nu->pntsu*nu->pntsv; 00437 00438 nu= nu->next; 00439 } 00440 return tot; 00441 } 00442 00443 /* **************** NURBS ROUTINES ******************** */ 00444 00445 void freeNurb(Nurb *nu) 00446 { 00447 00448 if(nu==NULL) return; 00449 00450 if(nu->bezt) MEM_freeN(nu->bezt); 00451 nu->bezt= NULL; 00452 if(nu->bp) MEM_freeN(nu->bp); 00453 nu->bp= NULL; 00454 if(nu->knotsu) MEM_freeN(nu->knotsu); 00455 nu->knotsu= NULL; 00456 if(nu->knotsv) MEM_freeN(nu->knotsv); 00457 nu->knotsv= NULL; 00458 /* if(nu->trim.first) freeNurblist(&(nu->trim)); */ 00459 00460 MEM_freeN(nu); 00461 00462 } 00463 00464 00465 void freeNurblist(ListBase *lb) 00466 { 00467 Nurb *nu, *next; 00468 00469 if(lb==NULL) return; 00470 00471 nu= lb->first; 00472 while(nu) { 00473 next= nu->next; 00474 freeNurb(nu); 00475 nu= next; 00476 } 00477 lb->first= lb->last= NULL; 00478 } 00479 00480 Nurb *duplicateNurb(Nurb *nu) 00481 { 00482 Nurb *newnu; 00483 int len; 00484 00485 newnu= (Nurb*)MEM_mallocN(sizeof(Nurb),"duplicateNurb"); 00486 if(newnu==NULL) return NULL; 00487 memcpy(newnu, nu, sizeof(Nurb)); 00488 00489 if(nu->bezt) { 00490 newnu->bezt= 00491 (BezTriple*)MEM_mallocN((nu->pntsu)* sizeof(BezTriple),"duplicateNurb2"); 00492 memcpy(newnu->bezt, nu->bezt, nu->pntsu*sizeof(BezTriple)); 00493 } 00494 else { 00495 len= nu->pntsu*nu->pntsv; 00496 newnu->bp= 00497 (BPoint*)MEM_mallocN((len)* sizeof(BPoint),"duplicateNurb3"); 00498 memcpy(newnu->bp, nu->bp, len*sizeof(BPoint)); 00499 00500 newnu->knotsu= newnu->knotsv= NULL; 00501 00502 if(nu->knotsu) { 00503 len= KNOTSU(nu); 00504 if(len) { 00505 newnu->knotsu= MEM_mallocN(len*sizeof(float), "duplicateNurb4"); 00506 memcpy(newnu->knotsu, nu->knotsu, sizeof(float)*len); 00507 } 00508 } 00509 if(nu->pntsv>1 && nu->knotsv) { 00510 len= KNOTSV(nu); 00511 if(len) { 00512 newnu->knotsv= MEM_mallocN(len*sizeof(float), "duplicateNurb5"); 00513 memcpy(newnu->knotsv, nu->knotsv, sizeof(float)*len); 00514 } 00515 } 00516 } 00517 return newnu; 00518 } 00519 00520 void duplicateNurblist(ListBase *lb1, ListBase *lb2) 00521 { 00522 Nurb *nu, *nun; 00523 00524 freeNurblist(lb1); 00525 00526 nu= lb2->first; 00527 while(nu) { 00528 nun= duplicateNurb(nu); 00529 BLI_addtail(lb1, nun); 00530 00531 nu= nu->next; 00532 } 00533 } 00534 00535 void test2DNurb(Nurb *nu) 00536 { 00537 BezTriple *bezt; 00538 BPoint *bp; 00539 int a; 00540 00541 if((nu->flag & CU_2D)==0) 00542 return; 00543 00544 if(nu->type == CU_BEZIER) { 00545 a= nu->pntsu; 00546 bezt= nu->bezt; 00547 while(a--) { 00548 bezt->vec[0][2]= 0.0; 00549 bezt->vec[1][2]= 0.0; 00550 bezt->vec[2][2]= 0.0; 00551 bezt++; 00552 } 00553 } 00554 else { 00555 a= nu->pntsu*nu->pntsv; 00556 bp= nu->bp; 00557 while(a--) { 00558 bp->vec[2]= 0.0; 00559 bp++; 00560 } 00561 } 00562 } 00563 00564 void minmaxNurb(Nurb *nu, float *min, float *max) 00565 { 00566 BezTriple *bezt; 00567 BPoint *bp; 00568 int a; 00569 00570 if(nu->type == CU_BEZIER) { 00571 a= nu->pntsu; 00572 bezt= nu->bezt; 00573 while(a--) { 00574 DO_MINMAX(bezt->vec[0], min, max); 00575 DO_MINMAX(bezt->vec[1], min, max); 00576 DO_MINMAX(bezt->vec[2], min, max); 00577 bezt++; 00578 } 00579 } 00580 else { 00581 a= nu->pntsu*nu->pntsv; 00582 bp= nu->bp; 00583 while(a--) { 00584 DO_MINMAX(bp->vec, min, max); 00585 bp++; 00586 } 00587 } 00588 } 00589 00590 /* be sure to call makeknots after this */ 00591 void addNurbPoints(Nurb *nu, int number) 00592 { 00593 BPoint *tmp= nu->bp; 00594 int i; 00595 nu->bp= (BPoint *)MEM_mallocN((nu->pntsu + number) * sizeof(BPoint), "rna_Curve_spline_points_add"); 00596 00597 if(tmp) { 00598 memmove(nu->bp, tmp, nu->pntsu * sizeof(BPoint)); 00599 MEM_freeN(tmp); 00600 } 00601 00602 memset(nu->bp + nu->pntsu, 0, number * sizeof(BPoint)); 00603 00604 for(i=0, tmp= nu->bp + nu->pntsu; i < number; i++, tmp++) { 00605 tmp->radius= 1.0f; 00606 } 00607 00608 nu->pntsu += number; 00609 } 00610 00611 void addNurbPointsBezier(Nurb *nu, int number) 00612 { 00613 BezTriple *tmp= nu->bezt; 00614 int i; 00615 nu->bezt= (BezTriple *)MEM_mallocN((nu->pntsu + number) * sizeof(BezTriple), "rna_Curve_spline_points_add"); 00616 00617 if(tmp) { 00618 memmove(nu->bezt, tmp, nu->pntsu * sizeof(BezTriple)); 00619 MEM_freeN(tmp); 00620 } 00621 00622 memset(nu->bezt + nu->pntsu, 0, number * sizeof(BezTriple)); 00623 00624 for(i=0, tmp= nu->bezt + nu->pntsu; i < number; i++, tmp++) { 00625 tmp->radius= 1.0f; 00626 } 00627 00628 nu->pntsu += number; 00629 } 00630 00631 /* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */ 00632 00633 00634 static void calcknots(float *knots, const short pnts, const short order, const short flag) 00635 { 00636 /* knots: number of pnts NOT corrected for cyclic */ 00637 const int pnts_order= pnts + order; 00638 float k; 00639 int a; 00640 00641 switch(flag & (CU_NURB_ENDPOINT|CU_NURB_BEZIER)) { 00642 case CU_NURB_ENDPOINT: 00643 k= 0.0; 00644 for(a=1; a <= pnts_order; a++) { 00645 knots[a-1]= k; 00646 if(a >= order && a <= pnts) k+= 1.0f; 00647 } 00648 break; 00649 case CU_NURB_BEZIER: 00650 /* Warning, the order MUST be 2 or 4, 00651 * if this is not enforced, the displist will be corrupt */ 00652 if(order==4) { 00653 k= 0.34; 00654 for(a=0; a < pnts_order; a++) { 00655 knots[a]= floorf(k); 00656 k+= (1.0f/3.0f); 00657 } 00658 } 00659 else if(order==3) { 00660 k= 0.6f; 00661 for(a=0; a < pnts_order; a++) { 00662 if(a >= order && a <= pnts) k+= 0.5f; 00663 knots[a]= floorf(k); 00664 } 00665 } 00666 else { 00667 printf("bez nurb curve order is not 3 or 4, should never happen\n"); 00668 } 00669 break; 00670 default: 00671 for(a=0; a < pnts_order; a++) { 00672 knots[a]= (float)a; 00673 } 00674 break; 00675 } 00676 } 00677 00678 static void makecyclicknots(float *knots, short pnts, short order) 00679 /* pnts, order: number of pnts NOT corrected for cyclic */ 00680 { 00681 int a, b, order2, c; 00682 00683 if(knots==NULL) return; 00684 00685 order2=order-1; 00686 00687 /* do first long rows (order -1), remove identical knots at endpoints */ 00688 if(order>2) { 00689 b= pnts+order2; 00690 for(a=1; a<order2; a++) { 00691 if(knots[b]!= knots[b-a]) break; 00692 } 00693 if(a==order2) knots[pnts+order-2]+= 1.0f; 00694 } 00695 00696 b= order; 00697 c=pnts + order + order2; 00698 for(a=pnts+order2; a<c; a++) { 00699 knots[a]= knots[a-1]+ (knots[b]-knots[b-1]); 00700 b--; 00701 } 00702 } 00703 00704 00705 00706 static void makeknots(Nurb *nu, short uv) 00707 { 00708 if(nu->type == CU_NURBS) { 00709 if(uv == 1) { 00710 if(nu->knotsu) MEM_freeN(nu->knotsu); 00711 if(check_valid_nurb_u(nu)) { 00712 nu->knotsu= MEM_callocN(4+sizeof(float)*KNOTSU(nu), "makeknots"); 00713 if(nu->flagu & CU_NURB_CYCLIC) { 00714 calcknots(nu->knotsu, nu->pntsu, nu->orderu, 0); /* cyclic should be uniform */ 00715 makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu); 00716 } else { 00717 calcknots(nu->knotsu, nu->pntsu, nu->orderu, nu->flagu); 00718 } 00719 } 00720 else nu->knotsu= NULL; 00721 00722 } else if(uv == 2) { 00723 if(nu->knotsv) MEM_freeN(nu->knotsv); 00724 if(check_valid_nurb_v(nu)) { 00725 nu->knotsv= MEM_callocN(4+sizeof(float)*KNOTSV(nu), "makeknots"); 00726 if(nu->flagv & CU_NURB_CYCLIC) { 00727 calcknots(nu->knotsv, nu->pntsv, nu->orderv, 0); /* cyclic should be uniform */ 00728 makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv); 00729 } else { 00730 calcknots(nu->knotsv, nu->pntsv, nu->orderv, nu->flagv); 00731 } 00732 } 00733 else nu->knotsv= NULL; 00734 } 00735 } 00736 } 00737 00738 void nurbs_knot_calc_u(Nurb *nu) 00739 { 00740 makeknots(nu, 1); 00741 } 00742 00743 void nurbs_knot_calc_v(Nurb *nu) 00744 { 00745 makeknots(nu, 2); 00746 } 00747 00748 static void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end) 00749 { 00750 float d, e; 00751 int i, i1 = 0, i2 = 0 ,j, orderpluspnts, opp2, o2; 00752 00753 orderpluspnts= order+pnts; 00754 opp2 = orderpluspnts-1; 00755 00756 /* this is for float inaccuracy */ 00757 if(t < knots[0]) t= knots[0]; 00758 else if(t > knots[opp2]) t= knots[opp2]; 00759 00760 /* this part is order '1' */ 00761 o2 = order + 1; 00762 for(i=0;i<opp2;i++) { 00763 if(knots[i]!=knots[i+1] && t>= knots[i] && t<=knots[i+1]) { 00764 basis[i]= 1.0; 00765 i1= i-o2; 00766 if(i1<0) i1= 0; 00767 i2= i; 00768 i++; 00769 while(i<opp2) { 00770 basis[i]= 0.0; 00771 i++; 00772 } 00773 break; 00774 } 00775 else basis[i]= 0.0; 00776 } 00777 basis[i]= 0.0; 00778 00779 /* this is order 2,3,... */ 00780 for(j=2; j<=order; j++) { 00781 00782 if(i2+j>= orderpluspnts) i2= opp2-j; 00783 00784 for(i= i1; i<=i2; i++) { 00785 if(basis[i]!=0.0f) 00786 d= ((t-knots[i])*basis[i]) / (knots[i+j-1]-knots[i]); 00787 else 00788 d= 0.0f; 00789 00790 if(basis[i+1] != 0.0f) 00791 e= ((knots[i+j]-t)*basis[i+1]) / (knots[i+j]-knots[i+1]); 00792 else 00793 e= 0.0; 00794 00795 basis[i]= d+e; 00796 } 00797 } 00798 00799 *start= 1000; 00800 *end= 0; 00801 00802 for(i=i1; i<=i2; i++) { 00803 if(basis[i] > 0.0f) { 00804 *end= i; 00805 if(*start==1000) *start= i; 00806 } 00807 } 00808 } 00809 00810 00811 void makeNurbfaces(Nurb *nu, float *coord_array, int rowstride, int resolu, int resolv) 00812 /* coord_array has to be 3*4*resolu*resolv in size, and zero-ed */ 00813 { 00814 BPoint *bp; 00815 float *basisu, *basis, *basisv, *sum, *fp, *in; 00816 float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv; 00817 int i, j, iofs, jofs, cycl, len, curu, curv; 00818 int istart, iend, jsta, jen, *jstart, *jend, ratcomp; 00819 00820 int totu = nu->pntsu*resolu, totv = nu->pntsv*resolv; 00821 00822 if(nu->knotsu==NULL || nu->knotsv==NULL) return; 00823 if(nu->orderu>nu->pntsu) return; 00824 if(nu->orderv>nu->pntsv) return; 00825 if(coord_array==NULL) return; 00826 00827 /* allocate and initialize */ 00828 len = totu * totv; 00829 if(len==0) return; 00830 00831 00832 00833 sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbfaces1"); 00834 00835 len= totu*totv; 00836 if(len==0) { 00837 MEM_freeN(sum); 00838 return; 00839 } 00840 00841 bp= nu->bp; 00842 i= nu->pntsu*nu->pntsv; 00843 ratcomp=0; 00844 while(i--) { 00845 if(bp->vec[3] != 1.0f) { 00846 ratcomp= 1; 00847 break; 00848 } 00849 bp++; 00850 } 00851 00852 fp= nu->knotsu; 00853 ustart= fp[nu->orderu-1]; 00854 if(nu->flagu & CU_NURB_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1]; 00855 else uend= fp[nu->pntsu]; 00856 ustep= (uend-ustart)/((nu->flagu & CU_NURB_CYCLIC) ? totu : totu - 1); 00857 00858 basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbfaces3"); 00859 00860 fp= nu->knotsv; 00861 vstart= fp[nu->orderv-1]; 00862 00863 if(nu->flagv & CU_NURB_CYCLIC) vend= fp[nu->pntsv+nu->orderv-1]; 00864 else vend= fp[nu->pntsv]; 00865 vstep= (vend-vstart)/((nu->flagv & CU_NURB_CYCLIC) ? totv : totv - 1); 00866 00867 len= KNOTSV(nu); 00868 basisv= (float *)MEM_mallocN(sizeof(float)*len*totv, "makeNurbfaces3"); 00869 jstart= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces4"); 00870 jend= (int *)MEM_mallocN(sizeof(float)*totv, "makeNurbfaces5"); 00871 00872 /* precalculation of basisv and jstart,jend */ 00873 if(nu->flagv & CU_NURB_CYCLIC) cycl= nu->orderv-1; 00874 else cycl= 0; 00875 v= vstart; 00876 basis= basisv; 00877 curv= totv; 00878 while(curv--) { 00879 basisNurb(v, nu->orderv, (short)(nu->pntsv+cycl), nu->knotsv, basis, jstart+curv, jend+curv); 00880 basis+= KNOTSV(nu); 00881 v+= vstep; 00882 } 00883 00884 if(nu->flagu & CU_NURB_CYCLIC) cycl= nu->orderu-1; 00885 else cycl= 0; 00886 in= coord_array; 00887 u= ustart; 00888 curu= totu; 00889 while(curu--) { 00890 00891 basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend); 00892 00893 basis= basisv; 00894 curv= totv; 00895 while(curv--) { 00896 00897 jsta= jstart[curv]; 00898 jen= jend[curv]; 00899 00900 /* calculate sum */ 00901 sumdiv= 0.0; 00902 fp= sum; 00903 00904 for(j= jsta; j<=jen; j++) { 00905 00906 if(j>=nu->pntsv) jofs= (j - nu->pntsv); 00907 else jofs= j; 00908 bp= nu->bp+ nu->pntsu*jofs+istart-1; 00909 00910 for(i= istart; i<=iend; i++, fp++) { 00911 00912 if(i>= nu->pntsu) { 00913 iofs= i- nu->pntsu; 00914 bp= nu->bp+ nu->pntsu*jofs+iofs; 00915 } 00916 else bp++; 00917 00918 if(ratcomp) { 00919 *fp= basisu[i]*basis[j]*bp->vec[3]; 00920 sumdiv+= *fp; 00921 } 00922 else *fp= basisu[i]*basis[j]; 00923 } 00924 } 00925 00926 if(ratcomp) { 00927 fp= sum; 00928 for(j= jsta; j<=jen; j++) { 00929 for(i= istart; i<=iend; i++, fp++) { 00930 *fp/= sumdiv; 00931 } 00932 } 00933 } 00934 00935 /* one! (1.0) real point now */ 00936 fp= sum; 00937 for(j= jsta; j<=jen; j++) { 00938 00939 if(j>=nu->pntsv) jofs= (j - nu->pntsv); 00940 else jofs= j; 00941 bp= nu->bp+ nu->pntsu*jofs+istart-1; 00942 00943 for(i= istart; i<=iend; i++, fp++) { 00944 00945 if(i>= nu->pntsu) { 00946 iofs= i- nu->pntsu; 00947 bp= nu->bp+ nu->pntsu*jofs+iofs; 00948 } 00949 else bp++; 00950 00951 if(*fp != 0.0f) { 00952 in[0]+= (*fp) * bp->vec[0]; 00953 in[1]+= (*fp) * bp->vec[1]; 00954 in[2]+= (*fp) * bp->vec[2]; 00955 } 00956 } 00957 } 00958 00959 in+=3; 00960 basis+= KNOTSV(nu); 00961 } 00962 u+= ustep; 00963 if (rowstride!=0) in = (float*) (((unsigned char*) in) + (rowstride - 3*totv*sizeof(*in))); 00964 } 00965 00966 /* free */ 00967 MEM_freeN(sum); 00968 MEM_freeN(basisu); 00969 MEM_freeN(basisv); 00970 MEM_freeN(jstart); 00971 MEM_freeN(jend); 00972 } 00973 00974 void makeNurbcurve(Nurb *nu, float *coord_array, float *tilt_array, float *radius_array, float *weight_array, int resolu, int stride) 00975 /* coord_array has to be 3*4*pntsu*resolu in size and zero-ed 00976 * tilt_array and radius_array will be written to if valid */ 00977 { 00978 BPoint *bp; 00979 float u, ustart, uend, ustep, sumdiv; 00980 float *basisu, *sum, *fp; 00981 float *coord_fp= coord_array, *tilt_fp= tilt_array, *radius_fp= radius_array, *weight_fp= weight_array; 00982 int i, len, istart, iend, cycl; 00983 00984 if(nu->knotsu==NULL) return; 00985 if(nu->orderu>nu->pntsu) return; 00986 if(coord_array==NULL) return; 00987 00988 /* allocate and initialize */ 00989 len= nu->pntsu; 00990 if(len==0) return; 00991 sum= (float *)MEM_callocN(sizeof(float)*len, "makeNurbcurve1"); 00992 00993 resolu= (resolu*SEGMENTSU(nu)); 00994 00995 if(resolu==0) { 00996 MEM_freeN(sum); 00997 return; 00998 } 00999 01000 fp= nu->knotsu; 01001 ustart= fp[nu->orderu-1]; 01002 if(nu->flagu & CU_NURB_CYCLIC) uend= fp[nu->pntsu+nu->orderu-1]; 01003 else uend= fp[nu->pntsu]; 01004 ustep= (uend-ustart)/(resolu - ((nu->flagu & CU_NURB_CYCLIC) ? 0 : 1)); 01005 01006 basisu= (float *)MEM_mallocN(sizeof(float)*KNOTSU(nu), "makeNurbcurve3"); 01007 01008 if(nu->flagu & CU_NURB_CYCLIC) cycl= nu->orderu-1; 01009 else cycl= 0; 01010 01011 u= ustart; 01012 while(resolu--) { 01013 01014 basisNurb(u, nu->orderu, (short)(nu->pntsu+cycl), nu->knotsu, basisu, &istart, &iend); 01015 /* calc sum */ 01016 sumdiv= 0.0; 01017 fp= sum; 01018 bp= nu->bp+ istart-1; 01019 for(i= istart; i<=iend; i++, fp++) { 01020 01021 if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu); 01022 else bp++; 01023 01024 *fp= basisu[i]*bp->vec[3]; 01025 sumdiv+= *fp; 01026 } 01027 if(sumdiv != 0.0f) if(sumdiv < 0.999f || sumdiv > 1.001f) { 01028 /* is normalizing needed? */ 01029 fp= sum; 01030 for(i= istart; i<=iend; i++, fp++) { 01031 *fp/= sumdiv; 01032 } 01033 } 01034 01035 /* one! (1.0) real point */ 01036 fp= sum; 01037 bp= nu->bp+ istart-1; 01038 for(i= istart; i<=iend; i++, fp++) { 01039 01040 if(i>=nu->pntsu) bp= nu->bp+(i - nu->pntsu); 01041 else bp++; 01042 01043 if(*fp != 0.0f) { 01044 01045 coord_fp[0]+= (*fp) * bp->vec[0]; 01046 coord_fp[1]+= (*fp) * bp->vec[1]; 01047 coord_fp[2]+= (*fp) * bp->vec[2]; 01048 01049 if (tilt_fp) 01050 (*tilt_fp) += (*fp) * bp->alfa; 01051 01052 if (radius_fp) 01053 (*radius_fp) += (*fp) * bp->radius; 01054 01055 if (weight_fp) 01056 (*weight_fp) += (*fp) * bp->weight; 01057 01058 } 01059 } 01060 01061 coord_fp = (float *)(((char *)coord_fp) + stride); 01062 01063 if (tilt_fp) tilt_fp = (float *)(((char *)tilt_fp) + stride); 01064 if (radius_fp) radius_fp = (float *)(((char *)radius_fp) + stride); 01065 if (weight_fp) weight_fp = (float *)(((char *)weight_fp) + stride); 01066 01067 u+= ustep; 01068 } 01069 01070 /* free */ 01071 MEM_freeN(sum); 01072 MEM_freeN(basisu); 01073 } 01074 01075 /* forward differencing method for bezier curve */ 01076 void forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride) 01077 { 01078 float rt0,rt1,rt2,rt3,f; 01079 int a; 01080 01081 f= (float)it; 01082 rt0= q0; 01083 rt1= 3.0f*(q1-q0)/f; 01084 f*= f; 01085 rt2= 3.0f*(q0-2.0f*q1+q2)/f; 01086 f*= it; 01087 rt3= (q3-q0+3.0f*(q1-q2))/f; 01088 01089 q0= rt0; 01090 q1= rt1+rt2+rt3; 01091 q2= 2*rt2+6*rt3; 01092 q3= 6*rt3; 01093 01094 for(a=0; a<=it; a++) { 01095 *p= q0; 01096 p = (float *)(((char *)p)+stride); 01097 q0+= q1; 01098 q1+= q2; 01099 q2+= q3; 01100 } 01101 } 01102 01103 static void forward_diff_bezier_cotangent(float *p0, float *p1, float *p2, float *p3, float *p, int it, int stride) 01104 { 01105 /* note that these are not purpendicular to the curve 01106 * they need to be rotated for this, 01107 * 01108 * This could also be optimized like forward_diff_bezier */ 01109 int a; 01110 for(a=0; a<=it; a++) { 01111 float t = (float)a / (float)it; 01112 01113 int i; 01114 for(i=0; i<3; i++) { 01115 p[i]= (-6*t + 6)*p0[i] + (18*t - 12)*p1[i] + (-18*t + 6)*p2[i] + (6*t)*p3[i]; 01116 } 01117 normalize_v3(p); 01118 p = (float *)(((char *)p)+stride); 01119 } 01120 } 01121 01122 /* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ 01123 01124 float *make_orco_surf(Object *ob) 01125 { 01126 /* Note: this function is used in convertblender only atm, so 01127 * suppose nonzero curve's render resolution should always be used */ 01128 Curve *cu= ob->data; 01129 Nurb *nu; 01130 int a, b, tot=0; 01131 int sizeu, sizev; 01132 int resolu, resolv; 01133 float *fp, *coord_array; 01134 01135 /* first calculate the size of the datablock */ 01136 nu= cu->nurb.first; 01137 while(nu) { 01138 /* as we want to avoid the seam in a cyclic nurbs 01139 texture wrapping, reserve extra orco data space to save these extra needed 01140 vertex based UV coordinates for the meridian vertices. 01141 Vertices on the 0/2pi boundary are not duplicated inside the displist but later in 01142 the renderface/vert construction. 01143 01144 See also convertblender.c: init_render_surf() 01145 */ 01146 01147 resolu= cu->resolu_ren ? cu->resolu_ren : nu->resolu; 01148 resolv= cu->resolv_ren ? cu->resolv_ren : nu->resolv; 01149 01150 sizeu = nu->pntsu*resolu; 01151 sizev = nu->pntsv*resolv; 01152 if (nu->flagu & CU_NURB_CYCLIC) sizeu++; 01153 if (nu->flagv & CU_NURB_CYCLIC) sizev++; 01154 if(nu->pntsv>1) tot+= sizeu * sizev; 01155 01156 nu= nu->next; 01157 } 01158 /* makeNurbfaces wants zeros */ 01159 fp= coord_array= MEM_callocN(3*sizeof(float)*tot, "make_orco"); 01160 01161 nu= cu->nurb.first; 01162 while(nu) { 01163 resolu= cu->resolu_ren ? cu->resolu_ren : nu->resolu; 01164 resolv= cu->resolv_ren ? cu->resolv_ren : nu->resolv; 01165 01166 if(nu->pntsv>1) { 01167 sizeu = nu->pntsu*resolu; 01168 sizev = nu->pntsv*resolv; 01169 if (nu->flagu & CU_NURB_CYCLIC) sizeu++; 01170 if (nu->flagv & CU_NURB_CYCLIC) sizev++; 01171 01172 if(cu->flag & CU_UV_ORCO) { 01173 for(b=0; b< sizeu; b++) { 01174 for(a=0; a< sizev; a++) { 01175 01176 if(sizev <2) fp[0]= 0.0f; 01177 else fp[0]= -1.0f + 2.0f*((float)a)/(sizev - 1); 01178 01179 if(sizeu <2) fp[1]= 0.0f; 01180 else fp[1]= -1.0f + 2.0f*((float)b)/(sizeu - 1); 01181 01182 fp[2]= 0.0; 01183 01184 fp+= 3; 01185 } 01186 } 01187 } 01188 else { 01189 float *_tdata= MEM_callocN((nu->pntsu*resolu) * (nu->pntsv*resolv) *3*sizeof(float), "temp data"); 01190 float *tdata= _tdata; 01191 01192 makeNurbfaces(nu, tdata, 0, resolu, resolv); 01193 01194 for(b=0; b<sizeu; b++) { 01195 int use_b= b; 01196 if (b==sizeu-1 && (nu->flagu & CU_NURB_CYCLIC)) 01197 use_b= 0; 01198 01199 for(a=0; a<sizev; a++) { 01200 int use_a= a; 01201 if (a==sizev-1 && (nu->flagv & CU_NURB_CYCLIC)) 01202 use_a= 0; 01203 01204 tdata = _tdata + 3 * (use_b * (nu->pntsv*resolv) + use_a); 01205 01206 fp[0]= (tdata[0]-cu->loc[0])/cu->size[0]; 01207 fp[1]= (tdata[1]-cu->loc[1])/cu->size[1]; 01208 fp[2]= (tdata[2]-cu->loc[2])/cu->size[2]; 01209 fp+= 3; 01210 } 01211 } 01212 01213 MEM_freeN(_tdata); 01214 } 01215 } 01216 nu= nu->next; 01217 } 01218 01219 return coord_array; 01220 } 01221 01222 01223 /* NOTE: This routine is tied to the order of vertex 01224 * built by displist and as passed to the renderer. 01225 */ 01226 float *make_orco_curve(Scene *scene, Object *ob) 01227 { 01228 Curve *cu = ob->data; 01229 DispList *dl; 01230 int u, v, numVerts; 01231 float *fp, *coord_array; 01232 ListBase disp = {NULL, NULL}; 01233 01234 makeDispListCurveTypes_forOrco(scene, ob, &disp); 01235 01236 numVerts = 0; 01237 for (dl=disp.first; dl; dl=dl->next) { 01238 if (dl->type==DL_INDEX3) { 01239 numVerts += dl->nr; 01240 } else if (dl->type==DL_SURF) { 01241 /* convertblender.c uses the Surface code for creating renderfaces when cyclic U only (closed circle beveling) */ 01242 if (dl->flag & DL_CYCL_U) { 01243 if (dl->flag & DL_CYCL_V) 01244 numVerts += (dl->parts+1)*(dl->nr+1); 01245 else 01246 numVerts += dl->parts*(dl->nr+1); 01247 } 01248 else 01249 numVerts += dl->parts*dl->nr; 01250 } 01251 } 01252 01253 fp= coord_array= MEM_mallocN(3*sizeof(float)*numVerts, "cu_orco"); 01254 for (dl=disp.first; dl; dl=dl->next) { 01255 if (dl->type==DL_INDEX3) { 01256 for (u=0; u<dl->nr; u++, fp+=3) { 01257 if (cu->flag & CU_UV_ORCO) { 01258 fp[0]= 2.0f*u/(dl->nr-1) - 1.0f; 01259 fp[1]= 0.0; 01260 fp[2]= 0.0; 01261 } else { 01262 copy_v3_v3(fp, &dl->verts[u*3]); 01263 01264 fp[0]= (fp[0]-cu->loc[0])/cu->size[0]; 01265 fp[1]= (fp[1]-cu->loc[1])/cu->size[1]; 01266 fp[2]= (fp[2]-cu->loc[2])/cu->size[2]; 01267 } 01268 } 01269 } else if (dl->type==DL_SURF) { 01270 int sizeu= dl->nr, sizev= dl->parts; 01271 01272 /* exception as handled in convertblender.c too */ 01273 if (dl->flag & DL_CYCL_U) { 01274 sizeu++; 01275 if (dl->flag & DL_CYCL_V) 01276 sizev++; 01277 } 01278 01279 for (u=0; u<sizev; u++) { 01280 for (v=0; v<sizeu; v++,fp+=3) { 01281 if (cu->flag & CU_UV_ORCO) { 01282 fp[0]= 2.0f*u/(sizev - 1) - 1.0f; 01283 fp[1]= 2.0f*v/(sizeu - 1) - 1.0f; 01284 fp[2]= 0.0; 01285 } else { 01286 float *vert; 01287 int realv= v % dl->nr; 01288 int realu= u % dl->parts; 01289 01290 vert= dl->verts + 3*(dl->nr*realu + realv); 01291 copy_v3_v3(fp, vert); 01292 01293 fp[0]= (fp[0]-cu->loc[0])/cu->size[0]; 01294 fp[1]= (fp[1]-cu->loc[1])/cu->size[1]; 01295 fp[2]= (fp[2]-cu->loc[2])/cu->size[2]; 01296 } 01297 } 01298 } 01299 } 01300 } 01301 01302 freedisplist(&disp); 01303 01304 return coord_array; 01305 } 01306 01307 01308 /* ***************** BEVEL ****************** */ 01309 01310 void makebevelcurve(Scene *scene, Object *ob, ListBase *disp, int forRender) 01311 { 01312 DispList *dl, *dlnew; 01313 Curve *bevcu, *cu; 01314 float *fp, facx, facy, angle, dangle; 01315 int nr, a; 01316 01317 cu= ob->data; 01318 disp->first = disp->last = NULL; 01319 01320 /* if a font object is being edited, then do nothing */ 01321 // XXX if( ob == obedit && ob->type == OB_FONT ) return; 01322 01323 if(cu->bevobj) { 01324 if (cu->bevobj->type!=OB_CURVE) return; 01325 01326 bevcu= cu->bevobj->data; 01327 if(bevcu->ext1==0.0f && bevcu->ext2==0.0f) { 01328 ListBase bevdisp= {NULL, NULL}; 01329 facx= cu->bevobj->size[0]; 01330 facy= cu->bevobj->size[1]; 01331 01332 if (forRender) { 01333 makeDispListCurveTypes_forRender(scene, cu->bevobj, &bevdisp, NULL, 0); 01334 dl= bevdisp.first; 01335 } else { 01336 dl= cu->bevobj->disp.first; 01337 if(dl==NULL) { 01338 makeDispListCurveTypes(scene, cu->bevobj, 0); 01339 dl= cu->bevobj->disp.first; 01340 } 01341 } 01342 01343 while(dl) { 01344 if ELEM(dl->type, DL_POLY, DL_SEGM) { 01345 dlnew= MEM_mallocN(sizeof(DispList), "makebevelcurve1"); 01346 *dlnew= *dl; 01347 dlnew->verts= MEM_mallocN(3*sizeof(float)*dl->parts*dl->nr, "makebevelcurve1"); 01348 memcpy(dlnew->verts, dl->verts, 3*sizeof(float)*dl->parts*dl->nr); 01349 01350 if(dlnew->type==DL_SEGM) dlnew->flag |= (DL_FRONT_CURVE|DL_BACK_CURVE); 01351 01352 BLI_addtail(disp, dlnew); 01353 fp= dlnew->verts; 01354 nr= dlnew->parts*dlnew->nr; 01355 while(nr--) { 01356 fp[2]= fp[1]*facy; 01357 fp[1]= -fp[0]*facx; 01358 fp[0]= 0.0; 01359 fp+= 3; 01360 } 01361 } 01362 dl= dl->next; 01363 } 01364 01365 freedisplist(&bevdisp); 01366 } 01367 } 01368 else if(cu->ext1==0.0f && cu->ext2==0.0f) { 01369 ; 01370 } 01371 else if(cu->ext2==0.0f) { 01372 dl= MEM_callocN(sizeof(DispList), "makebevelcurve2"); 01373 dl->verts= MEM_mallocN(2*3*sizeof(float), "makebevelcurve2"); 01374 BLI_addtail(disp, dl); 01375 dl->type= DL_SEGM; 01376 dl->parts= 1; 01377 dl->flag= DL_FRONT_CURVE|DL_BACK_CURVE; 01378 dl->nr= 2; 01379 01380 fp= dl->verts; 01381 fp[0]= fp[1]= 0.0; 01382 fp[2]= -cu->ext1; 01383 fp[3]= fp[4]= 0.0; 01384 fp[5]= cu->ext1; 01385 } 01386 else if( (cu->flag & (CU_FRONT|CU_BACK))==0 && cu->ext1==0.0f) { // we make a full round bevel in that case 01387 01388 nr= 4+ 2*cu->bevresol; 01389 01390 dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1"); 01391 dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1"); 01392 BLI_addtail(disp, dl); 01393 dl->type= DL_POLY; 01394 dl->parts= 1; 01395 dl->flag= DL_BACK_CURVE; 01396 dl->nr= nr; 01397 01398 /* a circle */ 01399 fp= dl->verts; 01400 dangle= (2.0f*(float)M_PI/(nr)); 01401 angle= -(nr-1)*dangle; 01402 01403 for(a=0; a<nr; a++) { 01404 fp[0]= 0.0; 01405 fp[1]= (cosf(angle)*(cu->ext2)); 01406 fp[2]= (sinf(angle)*(cu->ext2)) - cu->ext1; 01407 angle+= dangle; 01408 fp+= 3; 01409 } 01410 } 01411 else { 01412 short dnr; 01413 01414 /* bevel now in three parts, for proper vertex normals */ 01415 /* part 1, back */ 01416 01417 if((cu->flag & CU_BACK) || !(cu->flag & CU_FRONT)) { 01418 dnr= nr= 2+ cu->bevresol; 01419 if( (cu->flag & (CU_FRONT|CU_BACK))==0) 01420 nr= 3+ 2*cu->bevresol; 01421 01422 dl= MEM_callocN(sizeof(DispList), "makebevelcurve p1"); 01423 dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p1"); 01424 BLI_addtail(disp, dl); 01425 dl->type= DL_SEGM; 01426 dl->parts= 1; 01427 dl->flag= DL_BACK_CURVE; 01428 dl->nr= nr; 01429 01430 /* half a circle */ 01431 fp= dl->verts; 01432 dangle= (0.5*M_PI/(dnr-1)); 01433 angle= -(nr-1)*dangle; 01434 01435 for(a=0; a<nr; a++) { 01436 fp[0]= 0.0; 01437 fp[1]= (float)(cosf(angle)*(cu->ext2)); 01438 fp[2]= (float)(sinf(angle)*(cu->ext2)) - cu->ext1; 01439 angle+= dangle; 01440 fp+= 3; 01441 } 01442 } 01443 01444 /* part 2, sidefaces */ 01445 if(cu->ext1!=0.0f) { 01446 nr= 2; 01447 01448 dl= MEM_callocN(sizeof(DispList), "makebevelcurve p2"); 01449 dl->verts= MEM_callocN(nr*3*sizeof(float), "makebevelcurve p2"); 01450 BLI_addtail(disp, dl); 01451 dl->type= DL_SEGM; 01452 dl->parts= 1; 01453 dl->nr= nr; 01454 01455 fp= dl->verts; 01456 fp[1]= cu->ext2; 01457 fp[2]= -cu->ext1; 01458 fp[4]= cu->ext2; 01459 fp[5]= cu->ext1; 01460 01461 if( (cu->flag & (CU_FRONT|CU_BACK))==0) { 01462 dl= MEM_dupallocN(dl); 01463 dl->verts= MEM_dupallocN(dl->verts); 01464 BLI_addtail(disp, dl); 01465 01466 fp= dl->verts; 01467 fp[1]= -fp[1]; 01468 fp[2]= -fp[2]; 01469 fp[4]= -fp[4]; 01470 fp[5]= -fp[5]; 01471 } 01472 } 01473 01474 /* part 3, front */ 01475 if((cu->flag & CU_FRONT) || !(cu->flag & CU_BACK)) { 01476 dnr= nr= 2+ cu->bevresol; 01477 if( (cu->flag & (CU_FRONT|CU_BACK))==0) 01478 nr= 3+ 2*cu->bevresol; 01479 01480 dl= MEM_callocN(sizeof(DispList), "makebevelcurve p3"); 01481 dl->verts= MEM_mallocN(nr*3*sizeof(float), "makebevelcurve p3"); 01482 BLI_addtail(disp, dl); 01483 dl->type= DL_SEGM; 01484 dl->flag= DL_FRONT_CURVE; 01485 dl->parts= 1; 01486 dl->nr= nr; 01487 01488 /* half a circle */ 01489 fp= dl->verts; 01490 angle= 0.0; 01491 dangle= (0.5*M_PI/(dnr-1)); 01492 01493 for(a=0; a<nr; a++) { 01494 fp[0]= 0.0; 01495 fp[1]= (float)(cosf(angle)*(cu->ext2)); 01496 fp[2]= (float)(sinf(angle)*(cu->ext2)) + cu->ext1; 01497 angle+= dangle; 01498 fp+= 3; 01499 } 01500 } 01501 } 01502 } 01503 01504 static int cu_isectLL(float *v1, float *v2, float *v3, float *v4, short cox, short coy, float *labda, float *mu, float *vec) 01505 { 01506 /* return: 01507 -1: colliniar 01508 0: no intersection of segments 01509 1: exact intersection of segments 01510 2: cross-intersection of segments 01511 */ 01512 float deler; 01513 01514 deler= (v1[cox]-v2[cox])*(v3[coy]-v4[coy])-(v3[cox]-v4[cox])*(v1[coy]-v2[coy]); 01515 if(deler==0.0f) return -1; 01516 01517 *labda= (v1[coy]-v3[coy])*(v3[cox]-v4[cox])-(v1[cox]-v3[cox])*(v3[coy]-v4[coy]); 01518 *labda= -(*labda/deler); 01519 01520 deler= v3[coy]-v4[coy]; 01521 if(deler==0) { 01522 deler=v3[cox]-v4[cox]; 01523 *mu= -(*labda*(v2[cox]-v1[cox])+v1[cox]-v3[cox])/deler; 01524 } else { 01525 *mu= -(*labda*(v2[coy]-v1[coy])+v1[coy]-v3[coy])/deler; 01526 } 01527 vec[cox]= *labda*(v2[cox]-v1[cox])+v1[cox]; 01528 vec[coy]= *labda*(v2[coy]-v1[coy])+v1[coy]; 01529 01530 if(*labda>=0.0f && *labda<=1.0f && *mu>=0.0f && *mu<=1.0f) { 01531 if(*labda==0.0f || *labda==1.0f || *mu==0.0f || *mu==1.0f) return 1; 01532 return 2; 01533 } 01534 return 0; 01535 } 01536 01537 01538 static short bevelinside(BevList *bl1,BevList *bl2) 01539 { 01540 /* is bl2 INSIDE bl1 ? with left-right method and "labda's" */ 01541 /* returns '1' if correct hole */ 01542 BevPoint *bevp, *prevbevp; 01543 float min,max,vec[3],hvec1[3],hvec2[3],lab,mu; 01544 int nr, links=0,rechts=0,mode; 01545 01546 /* take first vertex of possible hole */ 01547 01548 bevp= (BevPoint *)(bl2+1); 01549 hvec1[0]= bevp->vec[0]; 01550 hvec1[1]= bevp->vec[1]; 01551 hvec1[2]= 0.0; 01552 copy_v3_v3(hvec2,hvec1); 01553 hvec2[0]+=1000; 01554 01555 /* test it with all edges of potential surounding poly */ 01556 /* count number of transitions left-right */ 01557 01558 bevp= (BevPoint *)(bl1+1); 01559 nr= bl1->nr; 01560 prevbevp= bevp+(nr-1); 01561 01562 while(nr--) { 01563 min= prevbevp->vec[1]; 01564 max= bevp->vec[1]; 01565 if(max<min) { 01566 min= max; 01567 max= prevbevp->vec[1]; 01568 } 01569 if(min!=max) { 01570 if(min<=hvec1[1] && max>=hvec1[1]) { 01571 /* there's a transition, calc intersection point */ 01572 mode= cu_isectLL(prevbevp->vec, bevp->vec, hvec1, hvec2, 0, 1, &lab, &mu, vec); 01573 /* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition 01574 only allow for one situation: we choose lab= 1.0 01575 */ 01576 if(mode >= 0 && lab != 0.0f) { 01577 if(vec[0]<hvec1[0]) links++; 01578 else rechts++; 01579 } 01580 } 01581 } 01582 prevbevp= bevp; 01583 bevp++; 01584 } 01585 01586 if( (links & 1) && (rechts & 1) ) return 1; 01587 return 0; 01588 } 01589 01590 01591 struct bevelsort { 01592 float left; 01593 BevList *bl; 01594 int dir; 01595 }; 01596 01597 static int vergxcobev(const void *a1, const void *a2) 01598 { 01599 const struct bevelsort *x1=a1,*x2=a2; 01600 01601 if( x1->left > x2->left ) return 1; 01602 else if( x1->left < x2->left) return -1; 01603 return 0; 01604 } 01605 01606 /* this function cannot be replaced with atan2, but why? */ 01607 01608 static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa) 01609 { 01610 float t01, t02, x3, y3; 01611 01612 t01= (float)sqrt(x1*x1+y1*y1); 01613 t02= (float)sqrt(x2*x2+y2*y2); 01614 if(t01==0.0f) t01= 1.0f; 01615 if(t02==0.0f) t02= 1.0f; 01616 01617 x1/=t01; 01618 y1/=t01; 01619 x2/=t02; 01620 y2/=t02; 01621 01622 t02= x1*x2+y1*y2; 01623 if(fabs(t02)>=1.0) t02= .5*M_PI; 01624 else t02= (saacos(t02))/2.0f; 01625 01626 t02= (float)sin(t02); 01627 if(t02==0.0f) t02= 1.0f; 01628 01629 x3= x1-x2; 01630 y3= y1-y2; 01631 if(x3==0 && y3==0) { 01632 x3= y1; 01633 y3= -x1; 01634 } else { 01635 t01= (float)sqrt(x3*x3+y3*y3); 01636 x3/=t01; 01637 y3/=t01; 01638 } 01639 01640 *sina= -y3/t02; 01641 *cosa= x3/t02; 01642 01643 } 01644 01645 static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *tilt_array, float *radius_array, float *weight_array, int resolu, int stride) 01646 { 01647 BezTriple *pprev, *next, *last; 01648 float fac, dfac, t[4]; 01649 int a; 01650 01651 if(tilt_array==NULL && radius_array==NULL) 01652 return; 01653 01654 last= nu->bezt+(nu->pntsu-1); 01655 01656 /* returns a point */ 01657 if(prevbezt==nu->bezt) { 01658 if(nu->flagu & CU_NURB_CYCLIC) pprev= last; 01659 else pprev= prevbezt; 01660 } 01661 else pprev= prevbezt-1; 01662 01663 /* next point */ 01664 if(bezt==last) { 01665 if(nu->flagu & CU_NURB_CYCLIC) next= nu->bezt; 01666 else next= bezt; 01667 } 01668 else next= bezt+1; 01669 01670 fac= 0.0; 01671 dfac= 1.0f/(float)resolu; 01672 01673 for(a=0; a<resolu; a++, fac+= dfac) { 01674 if (tilt_array) { 01675 if (nu->tilt_interp==KEY_CU_EASE) { /* May as well support for tilt also 2.47 ease interp */ 01676 *tilt_array = prevbezt->alfa + (bezt->alfa - prevbezt->alfa)*(3.0f*fac*fac - 2.0f*fac*fac*fac); 01677 } else { 01678 key_curve_position_weights(fac, t, nu->tilt_interp); 01679 *tilt_array= t[0]*pprev->alfa + t[1]*prevbezt->alfa + t[2]*bezt->alfa + t[3]*next->alfa; 01680 } 01681 01682 tilt_array = (float *)(((char *)tilt_array) + stride); 01683 } 01684 01685 if (radius_array) { 01686 if (nu->radius_interp==KEY_CU_EASE) { 01687 /* Support 2.47 ease interp 01688 * Note! - this only takes the 2 points into account, 01689 * giving much more localized results to changes in radius, sometimes you want that */ 01690 *radius_array = prevbezt->radius + (bezt->radius - prevbezt->radius)*(3.0f*fac*fac - 2.0f*fac*fac*fac); 01691 } else { 01692 01693 /* reuse interpolation from tilt if we can */ 01694 if (tilt_array==NULL || nu->tilt_interp != nu->radius_interp) { 01695 key_curve_position_weights(fac, t, nu->radius_interp); 01696 } 01697 *radius_array= t[0]*pprev->radius + t[1]*prevbezt->radius + t[2]*bezt->radius + t[3]*next->radius; 01698 } 01699 01700 radius_array = (float *)(((char *)radius_array) + stride); 01701 } 01702 01703 if(weight_array) { 01704 /* basic interpolation for now, could copy tilt interp too */ 01705 *weight_array = prevbezt->weight + (bezt->weight - prevbezt->weight)*(3.0f*fac*fac - 2.0f*fac*fac*fac); 01706 01707 weight_array = (float *)(((char *)weight_array) + stride); 01708 } 01709 } 01710 } 01711 01712 /* make_bevel_list_3D_* funcs, at a minimum these must 01713 * fill in the bezp->quat and bezp->dir values */ 01714 01715 /* correct non-cyclic cases by copying direction and rotation 01716 * values onto the first & last end-points */ 01717 static void bevel_list_cyclic_fix_3D(BevList *bl) 01718 { 01719 BevPoint *bevp, *bevp1; 01720 01721 bevp= (BevPoint *)(bl+1); 01722 bevp1= bevp+1; 01723 copy_qt_qt(bevp->quat, bevp1->quat); 01724 copy_v3_v3(bevp->dir, bevp1->dir); 01725 copy_v3_v3(bevp->tan, bevp1->tan); 01726 bevp= (BevPoint *)(bl+1); 01727 bevp+= (bl->nr-1); 01728 bevp1= bevp-1; 01729 copy_qt_qt(bevp->quat, bevp1->quat); 01730 copy_v3_v3(bevp->dir, bevp1->dir); 01731 copy_v3_v3(bevp->tan, bevp1->tan); 01732 } 01733 /* utility for make_bevel_list_3D_* funcs */ 01734 static void bevel_list_calc_bisect(BevList *bl) 01735 { 01736 BevPoint *bevp2, *bevp1, *bevp0; 01737 int nr; 01738 01739 bevp2= (BevPoint *)(bl+1); 01740 bevp1= bevp2+(bl->nr-1); 01741 bevp0= bevp1-1; 01742 01743 nr= bl->nr; 01744 while(nr--) { 01745 /* totally simple */ 01746 bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec); 01747 01748 bevp0= bevp1; 01749 bevp1= bevp2; 01750 bevp2++; 01751 } 01752 } 01753 static void bevel_list_flip_tangents(BevList *bl) 01754 { 01755 BevPoint *bevp2, *bevp1, *bevp0; 01756 int nr; 01757 01758 bevp2= (BevPoint *)(bl+1); 01759 bevp1= bevp2+(bl->nr-1); 01760 bevp0= bevp1-1; 01761 01762 nr= bl->nr; 01763 while(nr--) { 01764 if(RAD2DEGF(angle_v2v2(bevp0->tan, bevp1->tan)) > 90.0f) 01765 negate_v3(bevp1->tan); 01766 01767 bevp0= bevp1; 01768 bevp1= bevp2; 01769 bevp2++; 01770 } 01771 } 01772 /* apply user tilt */ 01773 static void bevel_list_apply_tilt(BevList *bl) 01774 { 01775 BevPoint *bevp2, *bevp1; 01776 int nr; 01777 float q[4]; 01778 01779 bevp2= (BevPoint *)(bl+1); 01780 bevp1= bevp2+(bl->nr-1); 01781 01782 nr= bl->nr; 01783 while(nr--) { 01784 axis_angle_to_quat(q, bevp1->dir, bevp1->alfa); 01785 mul_qt_qtqt(bevp1->quat, q, bevp1->quat); 01786 normalize_qt(bevp1->quat); 01787 01788 bevp1= bevp2; 01789 bevp2++; 01790 } 01791 } 01792 /* smooth quats, this function should be optimized, it can get slow with many iterations. */ 01793 static void bevel_list_smooth(BevList *bl, int smooth_iter) 01794 { 01795 BevPoint *bevp2, *bevp1, *bevp0; 01796 int nr; 01797 01798 float q[4]; 01799 float bevp0_quat[4]; 01800 int a; 01801 01802 for(a=0; a < smooth_iter; a++) { 01803 01804 bevp2= (BevPoint *)(bl+1); 01805 bevp1= bevp2+(bl->nr-1); 01806 bevp0= bevp1-1; 01807 01808 nr= bl->nr; 01809 01810 if(bl->poly== -1) { /* check its not cyclic */ 01811 /* skip the first point */ 01812 /* bevp0= bevp1; */ 01813 bevp1= bevp2; 01814 bevp2++; 01815 nr--; 01816 01817 bevp0= bevp1; 01818 bevp1= bevp2; 01819 bevp2++; 01820 nr--; 01821 01822 } 01823 01824 copy_qt_qt(bevp0_quat, bevp0->quat); 01825 01826 while(nr--) { 01827 /* interpolate quats */ 01828 float zaxis[3] = {0,0,1}, cross[3], q2[4]; 01829 interp_qt_qtqt(q, bevp0_quat, bevp2->quat, 0.5); 01830 normalize_qt(q); 01831 01832 mul_qt_v3(q, zaxis); 01833 cross_v3_v3v3(cross, zaxis, bevp1->dir); 01834 axis_angle_to_quat(q2, cross, angle_normalized_v3v3(zaxis, bevp1->dir)); 01835 normalize_qt(q2); 01836 01837 copy_qt_qt(bevp0_quat, bevp1->quat); 01838 mul_qt_qtqt(q, q2, q); 01839 interp_qt_qtqt(bevp1->quat, bevp1->quat, q, 0.5); 01840 normalize_qt(bevp1->quat); 01841 01842 01843 /* bevp0= bevp1; */ /* UNUSED */ 01844 bevp1= bevp2; 01845 bevp2++; 01846 } 01847 } 01848 } 01849 01850 static void make_bevel_list_3D_zup(BevList *bl) 01851 { 01852 BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */ 01853 int nr; 01854 01855 bevp2= (BevPoint *)(bl+1); 01856 bevp1= bevp2+(bl->nr-1); 01857 bevp0= bevp1-1; 01858 01859 nr= bl->nr; 01860 while(nr--) { 01861 /* totally simple */ 01862 bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec); 01863 vec_to_quat( bevp1->quat,bevp1->dir, 5, 1); 01864 01865 bevp0= bevp1; 01866 bevp1= bevp2; 01867 bevp2++; 01868 } 01869 } 01870 01871 static void make_bevel_list_3D_minimum_twist(BevList *bl) 01872 { 01873 BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */ 01874 int nr; 01875 float q[4]; 01876 01877 bevel_list_calc_bisect(bl); 01878 01879 bevp2= (BevPoint *)(bl+1); 01880 bevp1= bevp2+(bl->nr-1); 01881 bevp0= bevp1-1; 01882 01883 nr= bl->nr; 01884 while(nr--) { 01885 01886 if(nr+4 > bl->nr) { /* first time and second time, otherwise first point adjusts last */ 01887 vec_to_quat( bevp1->quat,bevp1->dir, 5, 1); 01888 } 01889 else { 01890 float angle= angle_normalized_v3v3(bevp0->dir, bevp1->dir); 01891 01892 if(angle > 0.0f) { /* otherwise we can keep as is */ 01893 float cross_tmp[3]; 01894 cross_v3_v3v3(cross_tmp, bevp0->dir, bevp1->dir); 01895 axis_angle_to_quat(q, cross_tmp, angle); 01896 mul_qt_qtqt(bevp1->quat, q, bevp0->quat); 01897 } 01898 else { 01899 copy_qt_qt(bevp1->quat, bevp0->quat); 01900 } 01901 } 01902 01903 bevp0= bevp1; 01904 bevp1= bevp2; 01905 bevp2++; 01906 } 01907 01908 if(bl->poly != -1) { /* check for cyclic */ 01909 01910 /* Need to correct for the start/end points not matching 01911 * do this by calculating the tilt angle difference, then apply 01912 * the rotation gradually over the entire curve 01913 * 01914 * note that the split is between last and second last, rather than first/last as youd expect. 01915 * 01916 * real order is like this 01917 * 0,1,2,3,4 --> 1,2,3,4,0 01918 * 01919 * this is why we compare last with second last 01920 * */ 01921 float vec_1[3]= {0,1,0}, vec_2[3]= {0,1,0}, angle, ang_fac, cross_tmp[3]; 01922 01923 BevPoint *bevp_first; 01924 BevPoint *bevp_last; 01925 01926 01927 bevp_first= (BevPoint *)(bl+1); 01928 bevp_first+= bl->nr-1; 01929 bevp_last = bevp_first; 01930 bevp_last--; 01931 01932 /* quats and vec's are normalized, should not need to re-normalize */ 01933 mul_qt_v3(bevp_first->quat, vec_1); 01934 mul_qt_v3(bevp_last->quat, vec_2); 01935 normalize_v3(vec_1); 01936 normalize_v3(vec_2); 01937 01938 /* align the vector, can avoid this and it looks 98% OK but 01939 * better to align the angle quat roll's before comparing */ 01940 { 01941 cross_v3_v3v3(cross_tmp, bevp_last->dir, bevp_first->dir); 01942 angle = angle_normalized_v3v3(bevp_first->dir, bevp_last->dir); 01943 axis_angle_to_quat(q, cross_tmp, angle); 01944 mul_qt_v3(q, vec_2); 01945 } 01946 01947 angle= angle_normalized_v3v3(vec_1, vec_2); 01948 01949 /* flip rotation if needs be */ 01950 cross_v3_v3v3(cross_tmp, vec_1, vec_2); 01951 normalize_v3(cross_tmp); 01952 if(angle_normalized_v3v3(bevp_first->dir, cross_tmp) < DEG2RADF(90.0f)) 01953 angle = -angle; 01954 01955 bevp2= (BevPoint *)(bl+1); 01956 bevp1= bevp2+(bl->nr-1); 01957 bevp0= bevp1-1; 01958 01959 nr= bl->nr; 01960 while(nr--) { 01961 ang_fac= angle * (1.0f-((float)nr/bl->nr)); /* also works */ 01962 01963 axis_angle_to_quat(q, bevp1->dir, ang_fac); 01964 mul_qt_qtqt(bevp1->quat, q, bevp1->quat); 01965 01966 bevp0= bevp1; 01967 bevp1= bevp2; 01968 bevp2++; 01969 } 01970 } 01971 } 01972 01973 static void make_bevel_list_3D_tangent(BevList *bl) 01974 { 01975 BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */ 01976 int nr; 01977 01978 float bevp0_tan[3], cross_tmp[3]; 01979 01980 bevel_list_calc_bisect(bl); 01981 if(bl->poly== -1) /* check its not cyclic */ 01982 bevel_list_cyclic_fix_3D(bl); // XXX - run this now so tangents will be right before doing the flipping 01983 bevel_list_flip_tangents(bl); 01984 01985 /* correct the tangents */ 01986 bevp2= (BevPoint *)(bl+1); 01987 bevp1= bevp2+(bl->nr-1); 01988 bevp0= bevp1-1; 01989 01990 nr= bl->nr; 01991 while(nr--) { 01992 01993 cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir); 01994 cross_v3_v3v3(bevp1->tan, cross_tmp, bevp1->dir); 01995 normalize_v3(bevp1->tan); 01996 01997 bevp0= bevp1; 01998 bevp1= bevp2; 01999 bevp2++; 02000 } 02001 02002 02003 /* now for the real twist calc */ 02004 bevp2= (BevPoint *)(bl+1); 02005 bevp1= bevp2+(bl->nr-1); 02006 bevp0= bevp1-1; 02007 02008 copy_v3_v3(bevp0_tan, bevp0->tan); 02009 02010 nr= bl->nr; 02011 while(nr--) { 02012 02013 /* make perpendicular, modify tan in place, is ok */ 02014 float cross_tmp[3]; 02015 float zero[3] = {0,0,0}; 02016 02017 cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir); 02018 normalize_v3(cross_tmp); 02019 tri_to_quat( bevp1->quat,zero, cross_tmp, bevp1->tan); /* XXX - could be faster */ 02020 02021 /* bevp0= bevp1; */ /* UNUSED */ 02022 bevp1= bevp2; 02023 bevp2++; 02024 } 02025 } 02026 02027 static void make_bevel_list_3D(BevList *bl, int smooth_iter, int twist_mode) 02028 { 02029 switch(twist_mode) { 02030 case CU_TWIST_TANGENT: 02031 make_bevel_list_3D_tangent(bl); 02032 break; 02033 case CU_TWIST_MINIMUM: 02034 make_bevel_list_3D_minimum_twist(bl); 02035 break; 02036 default: /* CU_TWIST_Z_UP default, pre 2.49c */ 02037 make_bevel_list_3D_zup(bl); 02038 } 02039 02040 if(bl->poly== -1) /* check its not cyclic */ 02041 bevel_list_cyclic_fix_3D(bl); 02042 02043 if(smooth_iter) 02044 bevel_list_smooth(bl, smooth_iter); 02045 02046 bevel_list_apply_tilt(bl); 02047 } 02048 02049 02050 02051 /* only for 2 points */ 02052 static void make_bevel_list_segment_3D(BevList *bl) 02053 { 02054 float q[4]; 02055 02056 BevPoint *bevp2= (BevPoint *)(bl+1); 02057 BevPoint *bevp1= bevp2+1; 02058 02059 /* simple quat/dir */ 02060 sub_v3_v3v3(bevp1->dir, bevp1->vec, bevp2->vec); 02061 normalize_v3(bevp1->dir); 02062 02063 vec_to_quat( bevp1->quat,bevp1->dir, 5, 1); 02064 02065 axis_angle_to_quat(q, bevp1->dir, bevp1->alfa); 02066 mul_qt_qtqt(bevp1->quat, q, bevp1->quat); 02067 normalize_qt(bevp1->quat); 02068 copy_v3_v3(bevp2->dir, bevp1->dir); 02069 copy_qt_qt(bevp2->quat, bevp1->quat); 02070 } 02071 02072 02073 02074 void makeBevelList(Object *ob) 02075 { 02076 /* 02077 - convert all curves to polys, with indication of resol and flags for double-vertices 02078 - possibly; do a smart vertice removal (in case Nurb) 02079 - separate in individual blicks with BoundBox 02080 - AutoHole detection 02081 */ 02082 Curve *cu; 02083 Nurb *nu; 02084 BezTriple *bezt, *prevbezt; 02085 BPoint *bp; 02086 BevList *bl, *blnew, *blnext; 02087 BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0; 02088 float min, inp, x1, x2, y1, y2; 02089 struct bevelsort *sortdata, *sd, *sd1; 02090 int a, b, nr, poly, resolu = 0, len = 0; 02091 int do_tilt, do_radius, do_weight; 02092 02093 /* this function needs an object, because of tflag and upflag */ 02094 cu= ob->data; 02095 02096 /* do we need to calculate the radius for each point? */ 02097 /* do_radius = (cu->bevobj || cu->taperobj || (cu->flag & CU_FRONT) || (cu->flag & CU_BACK)) ? 0 : 1; */ 02098 02099 /* STEP 1: MAKE POLYS */ 02100 02101 BLI_freelistN(&(cu->bev)); 02102 if(cu->editnurb && ob->type!=OB_FONT) { 02103 ListBase *nurbs= curve_editnurbs(cu); 02104 nu= nurbs->first; 02105 } else nu= cu->nurb.first; 02106 02107 while(nu) { 02108 02109 /* check if we will calculate tilt data */ 02110 do_tilt = CU_DO_TILT(cu, nu); 02111 do_radius = CU_DO_RADIUS(cu, nu); /* normal display uses the radius, better just to calculate them */ 02112 do_weight = 1; 02113 02114 /* check we are a single point? also check we are not a surface and that the orderu is sane, 02115 * enforced in the UI but can go wrong possibly */ 02116 if(!check_valid_nurb_u(nu)) { 02117 bl= MEM_callocN(sizeof(BevList)+1*sizeof(BevPoint), "makeBevelList1"); 02118 BLI_addtail(&(cu->bev), bl); 02119 bl->nr= 0; 02120 } else { 02121 if(G.rendering && cu->resolu_ren!=0) 02122 resolu= cu->resolu_ren; 02123 else 02124 resolu= nu->resolu; 02125 02126 if(nu->type == CU_POLY) { 02127 len= nu->pntsu; 02128 bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList2"); 02129 BLI_addtail(&(cu->bev), bl); 02130 02131 if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0; 02132 else bl->poly= -1; 02133 bl->nr= len; 02134 bl->dupe_nr= 0; 02135 bevp= (BevPoint *)(bl+1); 02136 bp= nu->bp; 02137 02138 while(len--) { 02139 copy_v3_v3(bevp->vec, bp->vec); 02140 bevp->alfa= bp->alfa; 02141 bevp->radius= bp->radius; 02142 bevp->weight= bp->weight; 02143 bevp->split_tag= TRUE; 02144 bevp++; 02145 bp++; 02146 } 02147 } 02148 else if(nu->type == CU_BEZIER) { 02149 02150 len= resolu*(nu->pntsu+ (nu->flagu & CU_NURB_CYCLIC) -1)+1; /* in case last point is not cyclic */ 02151 bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelBPoints"); 02152 BLI_addtail(&(cu->bev), bl); 02153 02154 if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0; 02155 else bl->poly= -1; 02156 bevp= (BevPoint *)(bl+1); 02157 02158 a= nu->pntsu-1; 02159 bezt= nu->bezt; 02160 if(nu->flagu & CU_NURB_CYCLIC) { 02161 a++; 02162 prevbezt= nu->bezt+(nu->pntsu-1); 02163 } 02164 else { 02165 prevbezt= bezt; 02166 bezt++; 02167 } 02168 02169 while(a--) { 02170 if(prevbezt->h2==HD_VECT && bezt->h1==HD_VECT) { 02171 02172 copy_v3_v3(bevp->vec, prevbezt->vec[1]); 02173 bevp->alfa= prevbezt->alfa; 02174 bevp->radius= prevbezt->radius; 02175 bevp->weight= prevbezt->weight; 02176 bevp->split_tag= TRUE; 02177 bevp->dupe_tag= FALSE; 02178 bevp++; 02179 bl->nr++; 02180 bl->dupe_nr= 1; 02181 } 02182 else { 02183 /* always do all three, to prevent data hanging around */ 02184 int j; 02185 02186 /* BevPoint must stay aligned to 4 so sizeof(BevPoint)/sizeof(float) works */ 02187 for(j=0; j<3; j++) { 02188 forward_diff_bezier( prevbezt->vec[1][j], prevbezt->vec[2][j], 02189 bezt->vec[0][j], bezt->vec[1][j], 02190 &(bevp->vec[j]), resolu, sizeof(BevPoint)); 02191 } 02192 02193 /* if both arrays are NULL do nothiong */ 02194 alfa_bezpart( prevbezt, bezt, nu, 02195 do_tilt ? &bevp->alfa : NULL, 02196 do_radius ? &bevp->radius : NULL, 02197 do_weight ? &bevp->weight : NULL, 02198 resolu, sizeof(BevPoint)); 02199 02200 02201 if(cu->twist_mode==CU_TWIST_TANGENT) { 02202 forward_diff_bezier_cotangent( 02203 prevbezt->vec[1], prevbezt->vec[2], 02204 bezt->vec[0], bezt->vec[1], 02205 bevp->tan, resolu, sizeof(BevPoint)); 02206 } 02207 02208 /* indicate with handlecodes double points */ 02209 if(prevbezt->h1==prevbezt->h2) { 02210 if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->split_tag= TRUE; 02211 } 02212 else { 02213 if(prevbezt->h1==0 || prevbezt->h1==HD_VECT) bevp->split_tag= TRUE; 02214 else if(prevbezt->h2==0 || prevbezt->h2==HD_VECT) bevp->split_tag= TRUE; 02215 } 02216 bl->nr+= resolu; 02217 bevp+= resolu; 02218 } 02219 prevbezt= bezt; 02220 bezt++; 02221 } 02222 02223 if((nu->flagu & CU_NURB_CYCLIC)==0) { /* not cyclic: endpoint */ 02224 copy_v3_v3(bevp->vec, prevbezt->vec[1]); 02225 bevp->alfa= prevbezt->alfa; 02226 bevp->radius= prevbezt->radius; 02227 bevp->weight= prevbezt->weight; 02228 bl->nr++; 02229 } 02230 } 02231 else if(nu->type == CU_NURBS) { 02232 if(nu->pntsv==1) { 02233 len= (resolu*SEGMENTSU(nu)); 02234 02235 bl= MEM_callocN(sizeof(BevList)+len*sizeof(BevPoint), "makeBevelList3"); 02236 BLI_addtail(&(cu->bev), bl); 02237 bl->nr= len; 02238 bl->dupe_nr= 0; 02239 if(nu->flagu & CU_NURB_CYCLIC) bl->poly= 0; 02240 else bl->poly= -1; 02241 bevp= (BevPoint *)(bl+1); 02242 02243 makeNurbcurve( nu, &bevp->vec[0], 02244 do_tilt ? &bevp->alfa : NULL, 02245 do_radius ? &bevp->radius : NULL, 02246 do_weight ? &bevp->weight : NULL, 02247 resolu, sizeof(BevPoint)); 02248 } 02249 } 02250 } 02251 nu= nu->next; 02252 } 02253 02254 /* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */ 02255 bl= cu->bev.first; 02256 while(bl) { 02257 if (bl->nr) { /* null bevel items come from single points */ 02258 nr= bl->nr; 02259 bevp1= (BevPoint *)(bl+1); 02260 bevp0= bevp1+(nr-1); 02261 nr--; 02262 while(nr--) { 02263 if( fabs(bevp0->vec[0]-bevp1->vec[0])<0.00001 ) { 02264 if( fabs(bevp0->vec[1]-bevp1->vec[1])<0.00001 ) { 02265 if( fabs(bevp0->vec[2]-bevp1->vec[2])<0.00001 ) { 02266 bevp0->dupe_tag= TRUE; 02267 bl->dupe_nr++; 02268 } 02269 } 02270 } 02271 bevp0= bevp1; 02272 bevp1++; 02273 } 02274 } 02275 bl= bl->next; 02276 } 02277 bl= cu->bev.first; 02278 while(bl) { 02279 blnext= bl->next; 02280 if(bl->nr && bl->dupe_nr) { 02281 nr= bl->nr- bl->dupe_nr+1; /* +1 because vectorbezier sets flag too */ 02282 blnew= MEM_mallocN(sizeof(BevList)+nr*sizeof(BevPoint), "makeBevelList4"); 02283 memcpy(blnew, bl, sizeof(BevList)); 02284 blnew->nr= 0; 02285 BLI_remlink(&(cu->bev), bl); 02286 BLI_insertlinkbefore(&(cu->bev),blnext,blnew); /* to make sure bevlijst is tuned with nurblist */ 02287 bevp0= (BevPoint *)(bl+1); 02288 bevp1= (BevPoint *)(blnew+1); 02289 nr= bl->nr; 02290 while(nr--) { 02291 if(bevp0->dupe_tag==0) { 02292 memcpy(bevp1, bevp0, sizeof(BevPoint)); 02293 bevp1++; 02294 blnew->nr++; 02295 } 02296 bevp0++; 02297 } 02298 MEM_freeN(bl); 02299 blnew->dupe_nr= 0; 02300 } 02301 bl= blnext; 02302 } 02303 02304 /* STEP 3: POLYS COUNT AND AUTOHOLE */ 02305 bl= cu->bev.first; 02306 poly= 0; 02307 while(bl) { 02308 if(bl->nr && bl->poly>=0) { 02309 poly++; 02310 bl->poly= poly; 02311 bl->hole= 0; 02312 } 02313 bl= bl->next; 02314 } 02315 02316 02317 /* find extreme left points, also test (turning) direction */ 02318 if(poly>0) { 02319 sd= sortdata= MEM_mallocN(sizeof(struct bevelsort)*poly, "makeBevelList5"); 02320 bl= cu->bev.first; 02321 while(bl) { 02322 if(bl->poly>0) { 02323 02324 min= 300000.0; 02325 bevp= (BevPoint *)(bl+1); 02326 nr= bl->nr; 02327 while(nr--) { 02328 if(min>bevp->vec[0]) { 02329 min= bevp->vec[0]; 02330 bevp1= bevp; 02331 } 02332 bevp++; 02333 } 02334 sd->bl= bl; 02335 sd->left= min; 02336 02337 bevp= (BevPoint *)(bl+1); 02338 if(bevp1== bevp) bevp0= bevp+ (bl->nr-1); 02339 else bevp0= bevp1-1; 02340 bevp= bevp+ (bl->nr-1); 02341 if(bevp1== bevp) bevp2= (BevPoint *)(bl+1); 02342 else bevp2= bevp1+1; 02343 02344 inp= (bevp1->vec[0]- bevp0->vec[0]) * (bevp0->vec[1]- bevp2->vec[1]) + (bevp0->vec[1]- bevp1->vec[1]) * (bevp0->vec[0]- bevp2->vec[0]); 02345 02346 if(inp > 0.0f) sd->dir= 1; 02347 else sd->dir= 0; 02348 02349 sd++; 02350 } 02351 02352 bl= bl->next; 02353 } 02354 qsort(sortdata,poly,sizeof(struct bevelsort), vergxcobev); 02355 02356 sd= sortdata+1; 02357 for(a=1; a<poly; a++, sd++) { 02358 bl= sd->bl; /* is bl a hole? */ 02359 sd1= sortdata+ (a-1); 02360 for(b=a-1; b>=0; b--, sd1--) { /* all polys to the left */ 02361 if(bevelinside(sd1->bl, bl)) { 02362 bl->hole= 1- sd1->bl->hole; 02363 break; 02364 } 02365 } 02366 } 02367 02368 /* turning direction */ 02369 if((cu->flag & CU_3D)==0) { 02370 sd= sortdata; 02371 for(a=0; a<poly; a++, sd++) { 02372 if(sd->bl->hole==sd->dir) { 02373 bl= sd->bl; 02374 bevp1= (BevPoint *)(bl+1); 02375 bevp2= bevp1+ (bl->nr-1); 02376 nr= bl->nr/2; 02377 while(nr--) { 02378 SWAP(BevPoint, *bevp1, *bevp2); 02379 bevp1++; 02380 bevp2--; 02381 } 02382 } 02383 } 02384 } 02385 MEM_freeN(sortdata); 02386 } 02387 02388 /* STEP 4: 2D-COSINES or 3D ORIENTATION */ 02389 if((cu->flag & CU_3D)==0) { 02390 /* note: bevp->dir and bevp->quat are not needed for beveling but are 02391 * used when making a path from a 2D curve, therefor they need to be set - Campbell */ 02392 bl= cu->bev.first; 02393 while(bl) { 02394 02395 if(bl->nr < 2) { 02396 /* do nothing */ 02397 } 02398 else if(bl->nr==2) { /* 2 pnt, treat separate */ 02399 bevp2= (BevPoint *)(bl+1); 02400 bevp1= bevp2+1; 02401 02402 x1= bevp1->vec[0]- bevp2->vec[0]; 02403 y1= bevp1->vec[1]- bevp2->vec[1]; 02404 02405 calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa)); 02406 bevp2->sina= bevp1->sina; 02407 bevp2->cosa= bevp1->cosa; 02408 02409 /* fill in dir & quat */ 02410 make_bevel_list_segment_3D(bl); 02411 } 02412 else { 02413 bevp2= (BevPoint *)(bl+1); 02414 bevp1= bevp2+(bl->nr-1); 02415 bevp0= bevp1-1; 02416 02417 nr= bl->nr; 02418 while(nr--) { 02419 x1= bevp1->vec[0]- bevp0->vec[0]; 02420 x2= bevp1->vec[0]- bevp2->vec[0]; 02421 y1= bevp1->vec[1]- bevp0->vec[1]; 02422 y2= bevp1->vec[1]- bevp2->vec[1]; 02423 02424 calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa)); 02425 02426 /* from: make_bevel_list_3D_zup, could call but avoid a second loop. 02427 * no need for tricky tilt calculation as with 3D curves */ 02428 bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec); 02429 vec_to_quat( bevp1->quat,bevp1->dir, 5, 1); 02430 /* done with inline make_bevel_list_3D_zup */ 02431 02432 bevp0= bevp1; 02433 bevp1= bevp2; 02434 bevp2++; 02435 } 02436 02437 /* correct non-cyclic cases */ 02438 if(bl->poly== -1) { 02439 bevp= (BevPoint *)(bl+1); 02440 bevp1= bevp+1; 02441 bevp->sina= bevp1->sina; 02442 bevp->cosa= bevp1->cosa; 02443 bevp= (BevPoint *)(bl+1); 02444 bevp+= (bl->nr-1); 02445 bevp1= bevp-1; 02446 bevp->sina= bevp1->sina; 02447 bevp->cosa= bevp1->cosa; 02448 02449 /* correct for the dir/quat, see above why its needed */ 02450 bevel_list_cyclic_fix_3D(bl); 02451 } 02452 } 02453 bl= bl->next; 02454 } 02455 } 02456 else { /* 3D Curves */ 02457 bl= cu->bev.first; 02458 while(bl) { 02459 02460 if(bl->nr < 2) { 02461 /* do nothing */ 02462 } 02463 else if(bl->nr==2) { /* 2 pnt, treat separate */ 02464 make_bevel_list_segment_3D(bl); 02465 } 02466 else { 02467 make_bevel_list_3D(bl, (int)(resolu*cu->twist_smooth), cu->twist_mode); 02468 } 02469 bl= bl->next; 02470 } 02471 } 02472 } 02473 02474 /* ****************** HANDLES ************** */ 02475 02476 /* 02477 * handlecodes: 02478 * 0: nothing, 1:auto, 2:vector, 3:aligned 02479 */ 02480 02481 /* mode: is not zero when FCurve, is 2 when forced horizontal for autohandles */ 02482 void calchandleNurb(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode) 02483 { 02484 float *p1,*p2,*p3, pt[3]; 02485 float dvec_a[3], dvec_b[3]; 02486 float len, len_a, len_b; 02487 const float eps= 1e-5; 02488 02489 if(bezt->h1==0 && bezt->h2==0) { 02490 return; 02491 } 02492 02493 p2= bezt->vec[1]; 02494 02495 if(prev==NULL) { 02496 p3= next->vec[1]; 02497 pt[0]= 2.0f*p2[0] - p3[0]; 02498 pt[1]= 2.0f*p2[1] - p3[1]; 02499 pt[2]= 2.0f*p2[2] - p3[2]; 02500 p1= pt; 02501 } 02502 else { 02503 p1= prev->vec[1]; 02504 } 02505 02506 if(next==NULL) { 02507 pt[0]= 2.0f*p2[0] - p1[0]; 02508 pt[1]= 2.0f*p2[1] - p1[1]; 02509 pt[2]= 2.0f*p2[2] - p1[2]; 02510 p3= pt; 02511 } 02512 else { 02513 p3= next->vec[1]; 02514 } 02515 02516 sub_v3_v3v3(dvec_a, p2, p1); 02517 sub_v3_v3v3(dvec_b, p3, p2); 02518 02519 if (mode != 0) { 02520 len_a= dvec_a[0]; 02521 len_b= dvec_b[0]; 02522 } 02523 else { 02524 len_a= len_v3(dvec_a); 02525 len_b= len_v3(dvec_b); 02526 } 02527 02528 if(len_a==0.0f) len_a=1.0f; 02529 if(len_b==0.0f) len_b=1.0f; 02530 02531 02532 if(ELEM(bezt->h1,HD_AUTO,HD_AUTO_ANIM) || ELEM(bezt->h2,HD_AUTO,HD_AUTO_ANIM)) { /* auto */ 02533 float tvec[3]; 02534 tvec[0]= dvec_b[0]/len_b + dvec_a[0]/len_a; 02535 tvec[1]= dvec_b[1]/len_b + dvec_a[1]/len_a; 02536 tvec[2]= dvec_b[2]/len_b + dvec_a[2]/len_a; 02537 len= len_v3(tvec) * 2.5614f; 02538 02539 if(len!=0.0f) { 02540 int leftviolate=0, rightviolate=0; /* for mode==2 */ 02541 02542 if(len_a>5.0f*len_b) len_a= 5.0f*len_b; 02543 if(len_b>5.0f*len_a) len_b= 5.0f*len_a; 02544 02545 if(ELEM(bezt->h1,HD_AUTO,HD_AUTO_ANIM)) { 02546 len_a/=len; 02547 madd_v3_v3v3fl(p2-3, p2, tvec, -len_a); 02548 02549 if((bezt->h1==HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */ 02550 float ydiff1= prev->vec[1][1] - bezt->vec[1][1]; 02551 float ydiff2= next->vec[1][1] - bezt->vec[1][1]; 02552 if( (ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f) ) { 02553 bezt->vec[0][1]= bezt->vec[1][1]; 02554 } 02555 else { /* handles should not be beyond y coord of two others */ 02556 if(ydiff1 <= 0.0f) { 02557 if(prev->vec[1][1] > bezt->vec[0][1]) { 02558 bezt->vec[0][1]= prev->vec[1][1]; 02559 leftviolate= 1; 02560 } 02561 } 02562 else { 02563 if(prev->vec[1][1] < bezt->vec[0][1]) { 02564 bezt->vec[0][1]= prev->vec[1][1]; 02565 leftviolate= 1; 02566 } 02567 } 02568 } 02569 } 02570 } 02571 if(ELEM(bezt->h2,HD_AUTO,HD_AUTO_ANIM)) { 02572 len_b/=len; 02573 madd_v3_v3v3fl(p2+3, p2, tvec, len_b); 02574 02575 if((bezt->h2==HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */ 02576 float ydiff1= prev->vec[1][1] - bezt->vec[1][1]; 02577 float ydiff2= next->vec[1][1] - bezt->vec[1][1]; 02578 if( (ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f) ) { 02579 bezt->vec[2][1]= bezt->vec[1][1]; 02580 } 02581 else { /* andles should not be beyond y coord of two others */ 02582 if(ydiff1 <= 0.0f) { 02583 if(next->vec[1][1] < bezt->vec[2][1]) { 02584 bezt->vec[2][1]= next->vec[1][1]; 02585 rightviolate= 1; 02586 } 02587 } 02588 else { 02589 if(next->vec[1][1] > bezt->vec[2][1]) { 02590 bezt->vec[2][1]= next->vec[1][1]; 02591 rightviolate= 1; 02592 } 02593 } 02594 } 02595 } 02596 } 02597 if(leftviolate || rightviolate) { /* align left handle */ 02598 float h1[3], h2[3]; 02599 float dot; 02600 02601 sub_v3_v3v3(h1, p2-3, p2); 02602 sub_v3_v3v3(h2, p2, p2+3); 02603 02604 len_a= normalize_v3(h1); 02605 len_b= normalize_v3(h2); 02606 02607 dot= dot_v3v3(h1, h2); 02608 02609 if(leftviolate) { 02610 mul_v3_fl(h1, dot * len_b); 02611 sub_v3_v3v3(p2+3, p2, h1); 02612 } 02613 else { 02614 mul_v3_fl(h2, dot * len_a); 02615 add_v3_v3v3(p2-3, p2, h2); 02616 } 02617 } 02618 02619 } 02620 } 02621 02622 if(bezt->h1==HD_VECT) { /* vector */ 02623 madd_v3_v3v3fl(p2-3, p2, dvec_a, -1.0f/3.0f); 02624 } 02625 if(bezt->h2==HD_VECT) { 02626 madd_v3_v3v3fl(p2+3, p2, dvec_b, 1.0f/3.0f); 02627 } 02628 02629 len_b= len_v3v3(p2, p2+3); 02630 len_a= len_v3v3(p2, p2-3); 02631 if(len_a==0.0f) len_a= 1.0f; 02632 if(len_b==0.0f) len_b= 1.0f; 02633 02634 if(bezt->f1 & SELECT) { /* order of calculation */ 02635 if(bezt->h2==HD_ALIGN) { /* aligned */ 02636 if(len_a>eps) { 02637 len= len_b/len_a; 02638 p2[3]= p2[0]+len*(p2[0] - p2[-3]); 02639 p2[4]= p2[1]+len*(p2[1] - p2[-2]); 02640 p2[5]= p2[2]+len*(p2[2] - p2[-1]); 02641 } 02642 } 02643 if(bezt->h1==HD_ALIGN) { 02644 if(len_b>eps) { 02645 len= len_a/len_b; 02646 p2[-3]= p2[0]+len*(p2[0] - p2[3]); 02647 p2[-2]= p2[1]+len*(p2[1] - p2[4]); 02648 p2[-1]= p2[2]+len*(p2[2] - p2[5]); 02649 } 02650 } 02651 } 02652 else { 02653 if(bezt->h1==HD_ALIGN) { 02654 if(len_b>eps) { 02655 len= len_a/len_b; 02656 p2[-3]= p2[0]+len*(p2[0] - p2[3]); 02657 p2[-2]= p2[1]+len*(p2[1] - p2[4]); 02658 p2[-1]= p2[2]+len*(p2[2] - p2[5]); 02659 } 02660 } 02661 if(bezt->h2==HD_ALIGN) { /* aligned */ 02662 if(len_a>eps) { 02663 len= len_b/len_a; 02664 p2[3]= p2[0]+len*(p2[0] - p2[-3]); 02665 p2[4]= p2[1]+len*(p2[1] - p2[-2]); 02666 p2[5]= p2[2]+len*(p2[2] - p2[-1]); 02667 } 02668 } 02669 } 02670 } 02671 02672 void calchandlesNurb(Nurb *nu) /* first, if needed, set handle flags */ 02673 { 02674 BezTriple *bezt, *prev, *next; 02675 short a; 02676 02677 if(nu->type != CU_BEZIER) return; 02678 if(nu->pntsu<2) return; 02679 02680 a= nu->pntsu; 02681 bezt= nu->bezt; 02682 if(nu->flagu & CU_NURB_CYCLIC) prev= bezt+(a-1); 02683 else prev= NULL; 02684 next= bezt+1; 02685 02686 while(a--) { 02687 calchandleNurb(bezt, prev, next, 0); 02688 prev= bezt; 02689 if(a==1) { 02690 if(nu->flagu & CU_NURB_CYCLIC) next= nu->bezt; 02691 else next= NULL; 02692 } 02693 else next++; 02694 02695 bezt++; 02696 } 02697 } 02698 02699 02700 void testhandlesNurb(Nurb *nu) 02701 { 02702 /* use when something has changed with handles. 02703 it treats all BezTriples with the following rules: 02704 PHASE 1: do types have to be altered? 02705 Auto handles: become aligned when selection status is NOT(000 || 111) 02706 Vector handles: become 'nothing' when (one half selected AND other not) 02707 PHASE 2: recalculate handles 02708 */ 02709 BezTriple *bezt; 02710 short flag, a; 02711 02712 if(nu->type != CU_BEZIER) return; 02713 02714 bezt= nu->bezt; 02715 a= nu->pntsu; 02716 while(a--) { 02717 flag= 0; 02718 if(bezt->f1 & SELECT) flag++; 02719 if(bezt->f2 & SELECT) flag += 2; 02720 if(bezt->f3 & SELECT) flag += 4; 02721 02722 if( !(flag==0 || flag==7) ) { 02723 if(ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM)) { /* auto */ 02724 bezt->h1= HD_ALIGN; 02725 } 02726 if(ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) { /* auto */ 02727 bezt->h2= HD_ALIGN; 02728 } 02729 02730 if(bezt->h1==HD_VECT) { /* vector */ 02731 if(flag < 4) bezt->h1= 0; 02732 } 02733 if(bezt->h2==HD_VECT) { /* vector */ 02734 if( flag > 3) bezt->h2= 0; 02735 } 02736 } 02737 bezt++; 02738 } 02739 02740 calchandlesNurb(nu); 02741 } 02742 02743 void autocalchandlesNurb(Nurb *nu, int flag) 02744 { 02745 /* checks handle coordinates and calculates type */ 02746 02747 BezTriple *bezt2, *bezt1, *bezt0; 02748 int i, align, leftsmall, rightsmall; 02749 02750 if(nu==NULL || nu->bezt==NULL) return; 02751 02752 bezt2 = nu->bezt; 02753 bezt1 = bezt2 + (nu->pntsu-1); 02754 bezt0 = bezt1 - 1; 02755 i = nu->pntsu; 02756 02757 while(i--) { 02758 02759 align= leftsmall= rightsmall= 0; 02760 02761 /* left handle: */ 02762 if(flag==0 || (bezt1->f1 & flag) ) { 02763 bezt1->h1= 0; 02764 /* distance too short: vectorhandle */ 02765 if( len_v3v3( bezt1->vec[1], bezt0->vec[1] ) < 0.0001f) { 02766 bezt1->h1= HD_VECT; 02767 leftsmall= 1; 02768 } 02769 else { 02770 /* aligned handle? */ 02771 if(dist_to_line_v2(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001f) { 02772 align= 1; 02773 bezt1->h1= HD_ALIGN; 02774 } 02775 /* or vector handle? */ 02776 if(dist_to_line_v2(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001f) 02777 bezt1->h1= HD_VECT; 02778 02779 } 02780 } 02781 /* right handle: */ 02782 if(flag==0 || (bezt1->f3 & flag) ) { 02783 bezt1->h2= 0; 02784 /* distance too short: vectorhandle */ 02785 if( len_v3v3( bezt1->vec[1], bezt2->vec[1] ) < 0.0001f) { 02786 bezt1->h2= HD_VECT; 02787 rightsmall= 1; 02788 } 02789 else { 02790 /* aligned handle? */ 02791 if(align) bezt1->h2= HD_ALIGN; 02792 02793 /* or vector handle? */ 02794 if(dist_to_line_v2(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001f) 02795 bezt1->h2= HD_VECT; 02796 02797 } 02798 } 02799 if(leftsmall && bezt1->h2==HD_ALIGN) bezt1->h2= 0; 02800 if(rightsmall && bezt1->h1==HD_ALIGN) bezt1->h1= 0; 02801 02802 /* undesired combination: */ 02803 if(bezt1->h1==HD_ALIGN && bezt1->h2==HD_VECT) bezt1->h1= 0; 02804 if(bezt1->h2==HD_ALIGN && bezt1->h1==HD_VECT) bezt1->h2= 0; 02805 02806 bezt0= bezt1; 02807 bezt1= bezt2; 02808 bezt2++; 02809 } 02810 02811 calchandlesNurb(nu); 02812 } 02813 02814 void autocalchandlesNurb_all(ListBase *editnurb, int flag) 02815 { 02816 Nurb *nu; 02817 02818 nu= editnurb->first; 02819 while(nu) { 02820 autocalchandlesNurb(nu, flag); 02821 nu= nu->next; 02822 } 02823 } 02824 02825 void sethandlesNurb(ListBase *editnurb, short code) 02826 { 02827 /* code==1: set autohandle */ 02828 /* code==2: set vectorhandle */ 02829 /* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */ 02830 /* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */ 02831 /* code==5: Set align, like 3 but no toggle */ 02832 /* code==6: Clear align, like 3 but no toggle */ 02833 Nurb *nu; 02834 BezTriple *bezt; 02835 short a, ok=0; 02836 02837 if(code==1 || code==2) { 02838 nu= editnurb->first; 02839 while(nu) { 02840 if(nu->type == CU_BEZIER) { 02841 bezt= nu->bezt; 02842 a= nu->pntsu; 02843 while(a--) { 02844 if((bezt->f1 & SELECT) || (bezt->f3 & SELECT)) { 02845 if(bezt->f1 & SELECT) bezt->h1= code; 02846 if(bezt->f3 & SELECT) bezt->h2= code; 02847 if(bezt->h1!=bezt->h2) { 02848 if ELEM(bezt->h1, HD_ALIGN, HD_AUTO) bezt->h1= HD_FREE; 02849 if ELEM(bezt->h2, HD_ALIGN, HD_AUTO) bezt->h2= HD_FREE; 02850 } 02851 } 02852 bezt++; 02853 } 02854 calchandlesNurb(nu); 02855 } 02856 nu= nu->next; 02857 } 02858 } 02859 else { 02860 /* there is 1 handle not FREE: FREE it all, else make ALIGNED */ 02861 02862 nu= editnurb->first; 02863 if (code == 5) { 02864 ok = HD_ALIGN; 02865 } else if (code == 6) { 02866 ok = HD_FREE; 02867 } else { 02868 /* Toggle */ 02869 while(nu) { 02870 if(nu->type == CU_BEZIER) { 02871 bezt= nu->bezt; 02872 a= nu->pntsu; 02873 while(a--) { 02874 if((bezt->f1 & SELECT) && bezt->h1) ok= 1; 02875 if((bezt->f3 & SELECT) && bezt->h2) ok= 1; 02876 if(ok) break; 02877 bezt++; 02878 } 02879 } 02880 nu= nu->next; 02881 } 02882 if(ok) ok= HD_FREE; 02883 else ok= HD_ALIGN; 02884 } 02885 nu= editnurb->first; 02886 while(nu) { 02887 if(nu->type == CU_BEZIER) { 02888 bezt= nu->bezt; 02889 a= nu->pntsu; 02890 while(a--) { 02891 if(bezt->f1 & SELECT) bezt->h1= ok; 02892 if(bezt->f3 & SELECT) bezt->h2= ok; 02893 02894 bezt++; 02895 } 02896 calchandlesNurb(nu); 02897 } 02898 nu= nu->next; 02899 } 02900 } 02901 } 02902 02903 static void swapdata(void *adr1, void *adr2, int len) 02904 { 02905 02906 if(len<=0) return; 02907 02908 if(len<65) { 02909 char adr[64]; 02910 02911 memcpy(adr, adr1, len); 02912 memcpy(adr1, adr2, len); 02913 memcpy(adr2, adr, len); 02914 } 02915 else { 02916 char *adr; 02917 02918 adr= (char *)MEM_mallocN(len, "curve swap"); 02919 memcpy(adr, adr1, len); 02920 memcpy(adr1, adr2, len); 02921 memcpy(adr2, adr, len); 02922 MEM_freeN(adr); 02923 } 02924 } 02925 02926 void switchdirectionNurb(Nurb *nu) 02927 { 02928 BezTriple *bezt1, *bezt2; 02929 BPoint *bp1, *bp2; 02930 float *fp1, *fp2, *tempf; 02931 int a, b; 02932 02933 if(nu->pntsu==1 && nu->pntsv==1) return; 02934 02935 if(nu->type == CU_BEZIER) { 02936 a= nu->pntsu; 02937 bezt1= nu->bezt; 02938 bezt2= bezt1+(a-1); 02939 if(a & 1) a+= 1; /* if odd, also swap middle content */ 02940 a/= 2; 02941 while(a>0) { 02942 if(bezt1!=bezt2) SWAP(BezTriple, *bezt1, *bezt2); 02943 02944 swapdata(bezt1->vec[0], bezt1->vec[2], 12); 02945 if(bezt1!=bezt2) swapdata(bezt2->vec[0], bezt2->vec[2], 12); 02946 02947 SWAP(char, bezt1->h1, bezt1->h2); 02948 SWAP(short, bezt1->f1, bezt1->f3); 02949 02950 if(bezt1!=bezt2) { 02951 SWAP(char, bezt2->h1, bezt2->h2); 02952 SWAP(short, bezt2->f1, bezt2->f3); 02953 bezt1->alfa= -bezt1->alfa; 02954 bezt2->alfa= -bezt2->alfa; 02955 } 02956 a--; 02957 bezt1++; 02958 bezt2--; 02959 } 02960 } 02961 else if(nu->pntsv==1) { 02962 a= nu->pntsu; 02963 bp1= nu->bp; 02964 bp2= bp1+(a-1); 02965 a/= 2; 02966 while(bp1!=bp2 && a>0) { 02967 SWAP(BPoint, *bp1, *bp2); 02968 a--; 02969 bp1->alfa= -bp1->alfa; 02970 bp2->alfa= -bp2->alfa; 02971 bp1++; 02972 bp2--; 02973 } 02974 if(nu->type == CU_NURBS) { 02975 /* no knots for too short paths */ 02976 if(nu->knotsu) { 02977 /* inverse knots */ 02978 a= KNOTSU(nu); 02979 fp1= nu->knotsu; 02980 fp2= fp1+(a-1); 02981 a/= 2; 02982 while(fp1!=fp2 && a>0) { 02983 SWAP(float, *fp1, *fp2); 02984 a--; 02985 fp1++; 02986 fp2--; 02987 } 02988 /* and make in increasing order again */ 02989 a= KNOTSU(nu); 02990 fp1= nu->knotsu; 02991 fp2=tempf= MEM_mallocN(sizeof(float)*a, "switchdirect"); 02992 while(a--) { 02993 fp2[0]= fabs(fp1[1]-fp1[0]); 02994 fp1++; 02995 fp2++; 02996 } 02997 02998 a= KNOTSU(nu)-1; 02999 fp1= nu->knotsu; 03000 fp2= tempf; 03001 fp1[0]= 0.0; 03002 fp1++; 03003 while(a--) { 03004 fp1[0]= fp1[-1]+fp2[0]; 03005 fp1++; 03006 fp2++; 03007 } 03008 MEM_freeN(tempf); 03009 } 03010 } 03011 } 03012 else { 03013 03014 for(b=0; b<nu->pntsv; b++) { 03015 03016 bp1= nu->bp+b*nu->pntsu; 03017 a= nu->pntsu; 03018 bp2= bp1+(a-1); 03019 a/= 2; 03020 03021 while(bp1!=bp2 && a>0) { 03022 SWAP(BPoint, *bp1, *bp2); 03023 a--; 03024 bp1++; 03025 bp2--; 03026 } 03027 } 03028 } 03029 } 03030 03031 03032 float (*curve_getVertexCos(Curve *UNUSED(cu), ListBase *lb, int *numVerts_r))[3] 03033 { 03034 int i, numVerts = *numVerts_r = count_curveverts(lb); 03035 float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos"); 03036 Nurb *nu; 03037 03038 co = cos[0]; 03039 for (nu=lb->first; nu; nu=nu->next) { 03040 if (nu->type == CU_BEZIER) { 03041 BezTriple *bezt = nu->bezt; 03042 03043 for (i=0; i<nu->pntsu; i++,bezt++) { 03044 copy_v3_v3(co, bezt->vec[0]); co+=3; 03045 copy_v3_v3(co, bezt->vec[1]); co+=3; 03046 copy_v3_v3(co, bezt->vec[2]); co+=3; 03047 } 03048 } else { 03049 BPoint *bp = nu->bp; 03050 03051 for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) { 03052 copy_v3_v3(co, bp->vec); co+=3; 03053 } 03054 } 03055 } 03056 03057 return cos; 03058 } 03059 03060 void curve_applyVertexCos(Curve *UNUSED(cu), ListBase *lb, float (*vertexCos)[3]) 03061 { 03062 float *co = vertexCos[0]; 03063 Nurb *nu; 03064 int i; 03065 03066 for (nu=lb->first; nu; nu=nu->next) { 03067 if (nu->type == CU_BEZIER) { 03068 BezTriple *bezt = nu->bezt; 03069 03070 for (i=0; i<nu->pntsu; i++,bezt++) { 03071 copy_v3_v3(bezt->vec[0], co); co+=3; 03072 copy_v3_v3(bezt->vec[1], co); co+=3; 03073 copy_v3_v3(bezt->vec[2], co); co+=3; 03074 } 03075 } else { 03076 BPoint *bp = nu->bp; 03077 03078 for (i=0; i<nu->pntsu*nu->pntsv; i++,bp++) { 03079 copy_v3_v3(bp->vec, co); co+=3; 03080 } 03081 } 03082 } 03083 } 03084 03085 float (*curve_getKeyVertexCos(Curve *UNUSED(cu), ListBase *lb, float *key))[3] 03086 { 03087 int i, numVerts = count_curveverts(lb); 03088 float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos)*numVerts, "cu_vcos"); 03089 Nurb *nu; 03090 03091 co = cos[0]; 03092 for (nu=lb->first; nu; nu=nu->next) { 03093 if (nu->type == CU_BEZIER) { 03094 BezTriple *bezt = nu->bezt; 03095 03096 for (i=0; i<nu->pntsu; i++,bezt++) { 03097 copy_v3_v3(co, key); co+=3; key+=3; 03098 copy_v3_v3(co, key); co+=3; key+=3; 03099 copy_v3_v3(co, key); co+=3; key+=3; 03100 key+=3; /* skip tilt */ 03101 } 03102 } 03103 else { 03104 BPoint *bp = nu->bp; 03105 03106 for(i=0; i<nu->pntsu*nu->pntsv; i++,bp++) { 03107 copy_v3_v3(co, key); co+=3; key+=3; 03108 key++; /* skip tilt */ 03109 } 03110 } 03111 } 03112 03113 return cos; 03114 } 03115 03116 void curve_applyKeyVertexTilts(Curve *UNUSED(cu), ListBase *lb, float *key) 03117 { 03118 Nurb *nu; 03119 int i; 03120 03121 for(nu=lb->first; nu; nu=nu->next) { 03122 if(nu->type == CU_BEZIER) { 03123 BezTriple *bezt = nu->bezt; 03124 03125 for(i=0; i<nu->pntsu; i++,bezt++) { 03126 key+=3*3; 03127 bezt->alfa= *key; 03128 key+=3; 03129 } 03130 } 03131 else { 03132 BPoint *bp = nu->bp; 03133 03134 for(i=0; i<nu->pntsu*nu->pntsv; i++,bp++) { 03135 key+=3; 03136 bp->alfa= *key; 03137 key++; 03138 } 03139 } 03140 } 03141 } 03142 03143 int check_valid_nurb_u( struct Nurb *nu ) 03144 { 03145 if (nu==NULL) return 0; 03146 if (nu->pntsu <= 1) return 0; 03147 if (nu->type != CU_NURBS) return 1; /* not a nurb, lets assume its valid */ 03148 03149 if (nu->pntsu < nu->orderu) return 0; 03150 if (((nu->flag & CU_NURB_CYCLIC)==0) && (nu->flagu & CU_NURB_BEZIER)) { /* Bezier U Endpoints */ 03151 if (nu->orderu==4) { 03152 if (nu->pntsu < 5) return 0; /* bezier with 4 orderu needs 5 points */ 03153 } else if (nu->orderu != 3) return 0; /* order must be 3 or 4 */ 03154 } 03155 return 1; 03156 } 03157 int check_valid_nurb_v( struct Nurb *nu) 03158 { 03159 if (nu==NULL) return 0; 03160 if (nu->pntsv <= 1) return 0; 03161 if (nu->type != CU_NURBS) return 1; /* not a nurb, lets assume its valid */ 03162 03163 if (nu->pntsv < nu->orderv) return 0; 03164 if (((nu->flag & CU_NURB_CYCLIC)==0) && (nu->flagv & CU_NURB_BEZIER)) { /* Bezier V Endpoints */ 03165 if (nu->orderv==4) { 03166 if (nu->pntsv < 5) return 0; /* bezier with 4 orderu needs 5 points */ 03167 } else if (nu->orderv != 3) return 0; /* order must be 3 or 4 */ 03168 } 03169 return 1; 03170 } 03171 03172 int clamp_nurb_order_u( struct Nurb *nu ) 03173 { 03174 int change = 0; 03175 if(nu->pntsu<nu->orderu) { 03176 nu->orderu= nu->pntsu; 03177 change= 1; 03178 } 03179 if(((nu->flagu & CU_NURB_CYCLIC)==0) && (nu->flagu & CU_NURB_BEZIER)) { 03180 CLAMP(nu->orderu, 3,4); 03181 change= 1; 03182 } 03183 return change; 03184 } 03185 03186 int clamp_nurb_order_v( struct Nurb *nu) 03187 { 03188 int change = 0; 03189 if(nu->pntsv<nu->orderv) { 03190 nu->orderv= nu->pntsv; 03191 change= 1; 03192 } 03193 if(((nu->flagv & CU_NURB_CYCLIC)==0) && (nu->flagv & CU_NURB_BEZIER)) { 03194 CLAMP(nu->orderv, 3,4); 03195 change= 1; 03196 } 03197 return change; 03198 } 03199 03200 /* Get edit nurbs or normal nurbs list */ 03201 ListBase *BKE_curve_nurbs(Curve *cu) 03202 { 03203 if (cu->editnurb) { 03204 return curve_editnurbs(cu); 03205 } 03206 03207 return &cu->nurb; 03208 } 03209 03210 03211 /* basic vertex data functions */ 03212 int minmax_curve(Curve *cu, float min[3], float max[3]) 03213 { 03214 ListBase *nurb_lb= BKE_curve_nurbs(cu); 03215 Nurb *nu; 03216 03217 for(nu= nurb_lb->first; nu; nu= nu->next) 03218 minmaxNurb(nu, min, max); 03219 03220 return (nurb_lb->first != NULL); 03221 } 03222 03223 int curve_center_median(Curve *cu, float cent[3]) 03224 { 03225 ListBase *nurb_lb= BKE_curve_nurbs(cu); 03226 Nurb *nu; 03227 int total= 0; 03228 03229 zero_v3(cent); 03230 03231 for(nu= nurb_lb->first; nu; nu= nu->next) { 03232 int i; 03233 03234 if(nu->type == CU_BEZIER) { 03235 BezTriple *bezt; 03236 i= nu->pntsu; 03237 total += i * 3; 03238 for(bezt= nu->bezt; i--; bezt++) { 03239 add_v3_v3(cent, bezt->vec[0]); 03240 add_v3_v3(cent, bezt->vec[1]); 03241 add_v3_v3(cent, bezt->vec[2]); 03242 } 03243 } 03244 else { 03245 BPoint *bp; 03246 i= nu->pntsu*nu->pntsv; 03247 total += i; 03248 for(bp= nu->bp; i--; bp++) { 03249 add_v3_v3(cent, bp->vec); 03250 } 03251 } 03252 } 03253 03254 mul_v3_fl(cent, 1.0f/(float)total); 03255 03256 return (total != 0); 03257 } 03258 03259 int curve_center_bounds(Curve *cu, float cent[3]) 03260 { 03261 float min[3], max[3]; 03262 INIT_MINMAX(min, max); 03263 if(minmax_curve(cu, min, max)) { 03264 mid_v3_v3v3(cent, min, max); 03265 return 1; 03266 } 03267 03268 return 0; 03269 } 03270 03271 void curve_translate(Curve *cu, float offset[3], int do_keys) 03272 { 03273 ListBase *nurb_lb= BKE_curve_nurbs(cu); 03274 Nurb *nu; 03275 int i; 03276 03277 for(nu= nurb_lb->first; nu; nu= nu->next) { 03278 BezTriple *bezt; 03279 BPoint *bp; 03280 03281 if(nu->type == CU_BEZIER) { 03282 i= nu->pntsu; 03283 for(bezt= nu->bezt; i--; bezt++) { 03284 add_v3_v3(bezt->vec[0], offset); 03285 add_v3_v3(bezt->vec[1], offset); 03286 add_v3_v3(bezt->vec[2], offset); 03287 } 03288 } 03289 else { 03290 i= nu->pntsu*nu->pntsv; 03291 for(bp= nu->bp; i--; bp++) { 03292 add_v3_v3(bp->vec, offset); 03293 } 03294 } 03295 } 03296 03297 if (do_keys && cu->key) { 03298 KeyBlock *kb; 03299 for (kb=cu->key->block.first; kb; kb=kb->next) { 03300 float *fp= kb->data; 03301 for (i= kb->totelem; i--; fp+=3) { 03302 add_v3_v3(fp, offset); 03303 } 03304 } 03305 } 03306 } 03307 03308 void curve_delete_material_index(Curve *cu, int index) 03309 { 03310 const int curvetype= curve_type(cu); 03311 03312 if(curvetype == OB_FONT) { 03313 struct CharInfo *info= cu->strinfo; 03314 int i; 03315 for(i= cu->len-1; i >= 0; i--, info++) { 03316 if (info->mat_nr && info->mat_nr>=index) { 03317 info->mat_nr--; 03318 } 03319 } 03320 } 03321 else { 03322 Nurb *nu; 03323 03324 for (nu= cu->nurb.first; nu; nu= nu->next) { 03325 if(nu->mat_nr && nu->mat_nr>=index) { 03326 nu->mat_nr--; 03327 if (curvetype == OB_CURVE) nu->charidx--; 03328 } 03329 } 03330 } 03331 }