Blender V2.61 - r43446
|
00001 00024 #ifndef __MIKKTSPACE_H__ 00025 #define __MIKKTSPACE_H__ 00026 00027 00028 #ifdef __cplusplus 00029 extern "C" { 00030 #endif 00031 00032 /* Author: Morten S. Mikkelsen 00033 * Version: 1.0 00034 * 00035 * The files mikktspace.h and mikktspace.c are designed to be 00036 * stand-alone files and it is important that they are kept this way. 00037 * Not having dependencies on structures/classes/libraries specific 00038 * to the program, in which they are used, allows them to be copied 00039 * and used as is into any tool, program or plugin. 00040 * The code is designed to consistently generate the same 00041 * tangent spaces, for a given mesh, in any tool in which it is used. 00042 * This is done by performing an internal welding step and subsequently an order-independent evaluation 00043 * of tangent space for meshes consisting of triangles and quads. 00044 * This means faces can be received in any order and the same is true for 00045 * the order of vertices of each face. The generated result will not be affected 00046 * by such reordering. Additionally, whether degenerate (vertices or texture coordinates) 00047 * primitives are present or not will not affect the generated results either. 00048 * Once tangent space calculation is done the vertices of degenerate primitives will simply 00049 * inherit tangent space from neighboring non degenerate primitives. 00050 * The analysis behind this implementation can be found in my master's thesis 00051 * which is available for download --> http://image.diku.dk/projects/media/morten.mikkelsen.08.pdf 00052 * Note that though the tangent spaces at the vertices are generated in an order-independent way, 00053 * by this implementation, the interpolated tangent space is still affected by which diagonal is 00054 * chosen to split each quad. A sensible solution is to have your tools pipeline always 00055 * split quads by the shortest diagonal. This choice is order-independent and works with mirroring. 00056 * If these have the same length then compare the diagonals defined by the texture coordinates. 00057 * XNormal which is a tool for baking normal maps allows you to write your own tangent space plugin 00058 * and also quad triangulator plugin. 00059 */ 00060 00061 00062 typedef int tbool; 00063 typedef struct SMikkTSpaceContext SMikkTSpaceContext; 00064 00065 typedef struct 00066 { 00067 // Returns the number of faces (triangles/quads) on the mesh to be processed. 00068 int (*m_getNumFaces)(const SMikkTSpaceContext * pContext); 00069 00070 // Returns the number of vertices on face number iFace 00071 // iFace is a number in the range {0, 1, ..., getNumFaces()-1} 00072 int (*m_getNumVerticesOfFace)(const SMikkTSpaceContext * pContext, const int iFace); 00073 00074 // returns the position/normal/texcoord of the referenced face of vertex number iVert. 00075 // iVert is in the range {0,1,2} for triangles and {0,1,2,3} for quads. 00076 void (*m_getPosition)(const SMikkTSpaceContext * pContext, float fvPosOut[], const int iFace, const int iVert); 00077 void (*m_getNormal)(const SMikkTSpaceContext * pContext, float fvNormOut[], const int iFace, const int iVert); 00078 void (*m_getTexCoord)(const SMikkTSpaceContext * pContext, float fvTexcOut[], const int iFace, const int iVert); 00079 00080 // either (or both) of the two setTSpace callbacks can be set. 00081 // The call-back m_setTSpaceBasic() is sufficient for basic normal mapping. 00082 00083 // This function is used to return the tangent and fSign to the application. 00084 // fvTangent is a unit length vector. 00085 // For normal maps it is sufficient to use the following simplified version of the bitangent which is generated at pixel/vertex level. 00086 // bitangent = fSign * cross(vN, tangent); 00087 // Note that the results are returned unindexed. It is possible to generate a new index list 00088 // But averaging/overwriting tangent spaces by using an already existing index list WILL produce INCRORRECT results. 00089 // DO NOT! use an already existing index list. 00090 void (*m_setTSpaceBasic)(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fSign, const int iFace, const int iVert); 00091 00092 // This function is used to return tangent space results to the application. 00093 // fvTangent and fvBiTangent are unit length vectors and fMagS and fMagT are their 00094 // true magnitudes which can be used for relief mapping effects. 00095 // fvBiTangent is the "real" bitangent and thus may not be perpendicular to fvTangent. 00096 // However, both are perpendicular to the vertex normal. 00097 // For normal maps it is sufficient to use the following simplified version of the bitangent which is generated at pixel/vertex level. 00098 // fSign = bIsOrientationPreserving ? 1.0f : (-1.0f); 00099 // bitangent = fSign * cross(vN, tangent); 00100 // Note that the results are returned unindexed. It is possible to generate a new index list 00101 // But averaging/overwriting tangent spaces by using an already existing index list WILL produce INCRORRECT results. 00102 // DO NOT! use an already existing index list. 00103 void (*m_setTSpace)(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fvBiTangent[], const float fMagS, const float fMagT, 00104 const tbool bIsOrientationPreserving, const int iFace, const int iVert); 00105 } SMikkTSpaceInterface; 00106 00107 struct SMikkTSpaceContext 00108 { 00109 SMikkTSpaceInterface * m_pInterface; // initialized with callback functions 00110 void * m_pUserData; // pointer to client side mesh data etc. (passed as the first parameter with every interface call) 00111 }; 00112 00113 // these are both thread safe! 00114 tbool genTangSpaceDefault(const SMikkTSpaceContext * pContext); // Default (recommended) fAngularThreshold is 180 degrees (which means threshold disabled) 00115 tbool genTangSpace(const SMikkTSpaceContext * pContext, const float fAngularThreshold); 00116 00117 00118 // To avoid visual errors (distortions/unwanted hard edges in lighting), when using sampled normal maps, the 00119 // normal map sampler must use the exact inverse of the pixel shader transformation. 00120 // The most efficient transformation we can possibly do in the pixel shader is 00121 // achieved by using, directly, the "unnormalized" interpolated tangent, bitangent and vertex normal: vT, vB and vN. 00122 // pixel shader (fast transform out) 00123 // vNout = normalize( vNt.x * vT + vNt.y * vB + vNt.z * vN ); 00124 // where vNt is the tangent space normal. The normal map sampler must likewise use the 00125 // interpolated and "unnormalized" tangent, bitangent and vertex normal to be compliant with the pixel shader. 00126 // sampler does (exact inverse of pixel shader): 00127 // float3 row0 = cross(vB, vN); 00128 // float3 row1 = cross(vN, vT); 00129 // float3 row2 = cross(vT, vB); 00130 // float fSign = dot(vT, row0)<0 ? -1 : 1; 00131 // vNt = normalize( fSign * float3(dot(vNout,row0), dot(vNout,row1), dot(vNout,row2)) ); 00132 // where vNout is the sampled normal in some chosen 3D space. 00133 // 00134 // Should you choose to reconstruct the bitangent in the pixel shader instead 00135 // of the vertex shader, as explained earlier, then be sure to do this in the normal map sampler also. 00136 // Finally, beware of quad triangulations. If the normal map sampler doesn't use the same triangulation of 00137 // quads as your renderer then problems will occur since the interpolated tangent spaces will differ 00138 // eventhough the vertex level tangent spaces match. This can be solved either by triangulating before 00139 // sampling/exporting or by using the order-independent choice of diagonal for splitting quads suggested earlier. 00140 // However, this must be used both by the sampler and your tools/rendering pipeline. 00141 00142 #ifdef __cplusplus 00143 } 00144 #endif 00145 00146 #endif