Blender V2.61 - r43446

MT_Quaternion.inl

Go to the documentation of this file.
00001 #include "MT_Optimize.h"
00002 
00003 GEN_INLINE MT_Quaternion& MT_Quaternion::operator*=(const MT_Quaternion& q) {
00004     setValue(m_co[3] * q[0] + m_co[0] * q[3] + m_co[1] * q[2] - m_co[2] * q[1],
00005              m_co[3] * q[1] + m_co[1] * q[3] + m_co[2] * q[0] - m_co[0] * q[2],
00006              m_co[3] * q[2] + m_co[2] * q[3] + m_co[0] * q[1] - m_co[1] * q[0],
00007              m_co[3] * q[3] - m_co[0] * q[0] - m_co[1] * q[1] - m_co[2] * q[2]);
00008     return *this;
00009 }
00010 
00011 GEN_INLINE void MT_Quaternion::conjugate() {
00012     m_co[0] = -m_co[0]; m_co[1] = -m_co[1]; m_co[2] = -m_co[2];
00013 }
00014 
00015 GEN_INLINE MT_Quaternion MT_Quaternion::conjugate() const {
00016     return MT_Quaternion(-m_co[0], -m_co[1], -m_co[2], m_co[3]);
00017 }
00018   
00019 GEN_INLINE void MT_Quaternion::invert() {
00020     conjugate();
00021     *this /= length2();
00022 }
00023 
00024 GEN_INLINE MT_Quaternion MT_Quaternion::inverse() const {
00025     return conjugate() / length2();
00026 }
00027 
00028 // From: "Uniform Random Rotations", Ken Shoemake, Graphics Gems III, 
00029 //       pg. 124-132
00030 GEN_INLINE MT_Quaternion MT_Quaternion::random() {
00031     MT_Scalar x0 = MT_random();
00032     MT_Scalar r1 = sqrt(MT_Scalar(1.0) - x0), r2 = sqrt(x0);
00033     MT_Scalar t1 = MT_2_PI * MT_random(), t2 = MT_2_PI * MT_random();
00034     MT_Scalar c1 = cos(t1), s1 = sin(t1);
00035     MT_Scalar c2 = cos(t2), s2 = sin(t2);
00036     return MT_Quaternion(s1 * r1, c1 * r1, s2 * r2, c2 * r2);
00037 }
00038 
00039 GEN_INLINE MT_Quaternion operator*(const MT_Quaternion& q1, 
00040                                    const MT_Quaternion& q2) {
00041     return MT_Quaternion(q1[3] * q2[0] + q1[0] * q2[3] + q1[1] * q2[2] - q1[2] * q2[1],
00042                          q1[3] * q2[1] + q1[1] * q2[3] + q1[2] * q2[0] - q1[0] * q2[2],
00043                          q1[3] * q2[2] + q1[2] * q2[3] + q1[0] * q2[1] - q1[1] * q2[0],
00044                          q1[3] * q2[3] - q1[0] * q2[0] - q1[1] * q2[1] - q1[2] * q2[2]); 
00045 }
00046 
00047 GEN_INLINE MT_Quaternion operator*(const MT_Quaternion& q, const MT_Vector3& w)
00048 {
00049     return MT_Quaternion( q[3] * w[0] + q[1] * w[2] - q[2] * w[1],
00050                           q[3] * w[1] + q[2] * w[0] - q[0] * w[2],
00051                           q[3] * w[2] + q[0] * w[1] - q[1] * w[0],
00052                          -q[0] * w[0] - q[1] * w[1] - q[2] * w[2]); 
00053 }
00054 
00055 GEN_INLINE MT_Quaternion operator*(const MT_Vector3& w, const MT_Quaternion& q)
00056 {
00057     return MT_Quaternion( w[0] * q[3] + w[1] * q[2] - w[2] * q[1],
00058                           w[1] * q[3] + w[2] * q[0] - w[0] * q[2],
00059                           w[2] * q[3] + w[0] * q[1] - w[1] * q[0],
00060                          -w[0] * q[0] - w[1] * q[1] - w[2] * q[2]); 
00061 }
00062 
00063 GEN_INLINE MT_Scalar MT_Quaternion::angle(const MT_Quaternion& q) const 
00064 {
00065     MT_Scalar s = sqrt(length2() * q.length2());
00066     assert(s != MT_Scalar(0.0));
00067     
00068     s = dot(q) / s;
00069     
00070     s = MT_clamp(s, -1.0, 1.0);
00071     
00072     return acos(s);
00073 }
00074 
00075 GEN_INLINE MT_Quaternion MT_Quaternion::slerp(const MT_Quaternion& q, const MT_Scalar& t) const
00076 {
00077     MT_Scalar d, s0, s1;
00078     MT_Scalar s = dot(q);
00079     bool neg = (s < 0.0);
00080 
00081     if (neg)
00082         s = -s;
00083     if ((1.0 - s) > 0.0001) 
00084     {
00085         MT_Scalar theta = acos(s);
00086         d = MT_Scalar(1.0) / sin(theta);
00087         s0 = sin((MT_Scalar(1.0) - t) * theta);
00088         s1 = sin(t * theta);
00089     }
00090     else
00091     {
00092         d = MT_Scalar(1.0);
00093         s0 = MT_Scalar(1.0) - t;
00094         s1 = t;
00095     }
00096     if (neg)
00097         s1 = -s1;
00098     return d*(*this * s0 + q * s1);
00099 }
00100