Blender V2.61 - r43446
|
00001 /* 00002 Bullet Continuous Collision Detection and Physics Library 00003 Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ 00004 00005 This software is provided 'as-is', without any express or implied warranty. 00006 In no event will the authors be held liable for any damages arising from the use of this software. 00007 Permission is granted to anyone to use this software for any purpose, 00008 including commercial applications, and to alter it and redistribute it freely, 00009 subject to the following restrictions: 00010 00011 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 00012 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 00013 3. This notice may not be removed or altered from any source distribution. 00014 */ 00015 00016 #ifndef BT_SOLVER_BODY_H 00017 #define BT_SOLVER_BODY_H 00018 00019 class btRigidBody; 00020 #include "LinearMath/btVector3.h" 00021 #include "LinearMath/btMatrix3x3.h" 00022 #include "BulletDynamics/Dynamics/btRigidBody.h" 00023 #include "LinearMath/btAlignedAllocator.h" 00024 #include "LinearMath/btTransformUtil.h" 00025 00027 #ifdef BT_USE_SSE 00028 #define USE_SIMD 1 00029 #endif // 00030 00031 00032 #ifdef USE_SIMD 00033 00034 struct btSimdScalar 00035 { 00036 SIMD_FORCE_INLINE btSimdScalar() 00037 { 00038 00039 } 00040 00041 SIMD_FORCE_INLINE btSimdScalar(float fl) 00042 :m_vec128 (_mm_set1_ps(fl)) 00043 { 00044 } 00045 00046 SIMD_FORCE_INLINE btSimdScalar(__m128 v128) 00047 :m_vec128(v128) 00048 { 00049 } 00050 union 00051 { 00052 __m128 m_vec128; 00053 float m_floats[4]; 00054 int m_ints[4]; 00055 btScalar m_unusedPadding; 00056 }; 00057 SIMD_FORCE_INLINE __m128 get128() 00058 { 00059 return m_vec128; 00060 } 00061 00062 SIMD_FORCE_INLINE const __m128 get128() const 00063 { 00064 return m_vec128; 00065 } 00066 00067 SIMD_FORCE_INLINE void set128(__m128 v128) 00068 { 00069 m_vec128 = v128; 00070 } 00071 00072 SIMD_FORCE_INLINE operator __m128() 00073 { 00074 return m_vec128; 00075 } 00076 SIMD_FORCE_INLINE operator const __m128() const 00077 { 00078 return m_vec128; 00079 } 00080 00081 SIMD_FORCE_INLINE operator float() const 00082 { 00083 return m_floats[0]; 00084 } 00085 00086 }; 00087 00089 SIMD_FORCE_INLINE btSimdScalar 00090 operator*(const btSimdScalar& v1, const btSimdScalar& v2) 00091 { 00092 return btSimdScalar(_mm_mul_ps(v1.get128(),v2.get128())); 00093 } 00094 00096 SIMD_FORCE_INLINE btSimdScalar 00097 operator+(const btSimdScalar& v1, const btSimdScalar& v2) 00098 { 00099 return btSimdScalar(_mm_add_ps(v1.get128(),v2.get128())); 00100 } 00101 00102 00103 #else 00104 #define btSimdScalar btScalar 00105 #endif 00106 00108 ATTRIBUTE_ALIGNED64 (struct) btSolverBodyObsolete 00109 { 00110 BT_DECLARE_ALIGNED_ALLOCATOR(); 00111 btVector3 m_deltaLinearVelocity; 00112 btVector3 m_deltaAngularVelocity; 00113 btVector3 m_angularFactor; 00114 btVector3 m_invMass; 00115 btRigidBody* m_originalBody; 00116 btVector3 m_pushVelocity; 00117 btVector3 m_turnVelocity; 00118 00119 00120 SIMD_FORCE_INLINE void getVelocityInLocalPointObsolete(const btVector3& rel_pos, btVector3& velocity ) const 00121 { 00122 if (m_originalBody) 00123 velocity = m_originalBody->getLinearVelocity()+m_deltaLinearVelocity + (m_originalBody->getAngularVelocity()+m_deltaAngularVelocity).cross(rel_pos); 00124 else 00125 velocity.setValue(0,0,0); 00126 } 00127 00128 SIMD_FORCE_INLINE void getAngularVelocity(btVector3& angVel) const 00129 { 00130 if (m_originalBody) 00131 angVel = m_originalBody->getAngularVelocity()+m_deltaAngularVelocity; 00132 else 00133 angVel.setValue(0,0,0); 00134 } 00135 00136 00137 //Optimization for the iterative solver: avoid calculating constant terms involving inertia, normal, relative position 00138 SIMD_FORCE_INLINE void applyImpulse(const btVector3& linearComponent, const btVector3& angularComponent,const btScalar impulseMagnitude) 00139 { 00140 //if (m_invMass) 00141 { 00142 m_deltaLinearVelocity += linearComponent*impulseMagnitude; 00143 m_deltaAngularVelocity += angularComponent*(impulseMagnitude*m_angularFactor); 00144 } 00145 } 00146 00147 SIMD_FORCE_INLINE void internalApplyPushImpulse(const btVector3& linearComponent, const btVector3& angularComponent,btScalar impulseMagnitude) 00148 { 00149 if (m_originalBody) 00150 { 00151 m_pushVelocity += linearComponent*impulseMagnitude; 00152 m_turnVelocity += angularComponent*(impulseMagnitude*m_angularFactor); 00153 } 00154 } 00155 00156 void writebackVelocity() 00157 { 00158 if (m_originalBody) 00159 { 00160 m_originalBody->setLinearVelocity(m_originalBody->getLinearVelocity()+ m_deltaLinearVelocity); 00161 m_originalBody->setAngularVelocity(m_originalBody->getAngularVelocity()+m_deltaAngularVelocity); 00162 00163 //m_originalBody->setCompanionId(-1); 00164 } 00165 } 00166 00167 00168 void writebackVelocity(btScalar timeStep) 00169 { 00170 (void) timeStep; 00171 if (m_originalBody) 00172 { 00173 m_originalBody->setLinearVelocity(m_originalBody->getLinearVelocity()+ m_deltaLinearVelocity); 00174 m_originalBody->setAngularVelocity(m_originalBody->getAngularVelocity()+m_deltaAngularVelocity); 00175 00176 //correct the position/orientation based on push/turn recovery 00177 btTransform newTransform; 00178 btTransformUtil::integrateTransform(m_originalBody->getWorldTransform(),m_pushVelocity,m_turnVelocity,timeStep,newTransform); 00179 m_originalBody->setWorldTransform(newTransform); 00180 00181 //m_originalBody->setCompanionId(-1); 00182 } 00183 } 00184 00185 00186 00187 }; 00188 00189 #endif //BT_SOLVER_BODY_H 00190 00191