Blender V2.61 - r43446
|
00001 /* 00002 * Copyright 2011, Blender Foundation. 00003 * 00004 * This program is free software; you can redistribute it and/or 00005 * modify it under the terms of the GNU General Public License 00006 * as published by the Free Software Foundation; either version 2 00007 * of the License, or (at your option) any later version. 00008 * 00009 * This program is distributed in the hope that it will be useful, 00010 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00011 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00012 * GNU General Public License for more details. 00013 * 00014 * You should have received a copy of the GNU General Public License 00015 * along with this program; if not, write to the Free Software Foundation, 00016 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 00017 */ 00018 00019 CCL_NAMESPACE_BEGIN 00020 00021 /* See "Tracing Ray Differentials", Homan Igehy, 1999. */ 00022 00023 __device void differential_transfer(differential3 *dP_, const differential3 dP, float3 D, const differential3 dD, float3 Ng, float t) 00024 { 00025 /* ray differential transfer through homogenous medium, to 00026 * compute dPdx/dy at a shading point from the incoming ray */ 00027 00028 float3 tmp = D/dot(D, Ng); 00029 float3 tmpx = dP.dx + t*dD.dx; 00030 float3 tmpy = dP.dy + t*dD.dy; 00031 00032 dP_->dx = tmpx - dot(tmpx, Ng)*tmp; 00033 dP_->dy = tmpy - dot(tmpy, Ng)*tmp; 00034 } 00035 00036 __device void differential_incoming(differential3 *dI, const differential3 dD) 00037 { 00038 /* compute dIdx/dy at a shading point, we just need to negate the 00039 * differential of the ray direction */ 00040 00041 dI->dx = -dD.dx; 00042 dI->dy = -dD.dy; 00043 } 00044 00045 __device void differential_dudv(differential *du, differential *dv, float3 dPdu, float3 dPdv, differential3 dP, float3 Ng) 00046 { 00047 /* now we have dPdx/dy from the ray differential transfer, and dPdu/dv 00048 * from the primitive, we can compute dudx/dy and dvdx/dy. these are 00049 * mainly used for differentials of arbitrary mesh attributes. */ 00050 00051 /* find most stable axis to project to 2D */ 00052 float xn= fabsf(Ng.x); 00053 float yn= fabsf(Ng.y); 00054 float zn= fabsf(Ng.z); 00055 00056 if(zn < xn || zn < yn) { 00057 if(yn < xn || yn < zn) { 00058 dPdu.x = dPdu.y; 00059 dPdv.x = dPdv.y; 00060 dP.dx.x = dP.dx.y; 00061 dP.dy.x = dP.dy.y; 00062 } 00063 00064 dPdu.y = dPdu.z; 00065 dPdv.y = dPdv.z; 00066 dP.dx.y = dP.dx.z; 00067 dP.dy.y = dP.dy.z; 00068 } 00069 00070 /* using Cramer's rule, we solve for dudx and dvdx in a 2x2 linear system, 00071 * and the same for dudy and dvdy. the denominator is the same for both 00072 * solutions, so we compute it only once. 00073 * 00074 * dP.dx = dPdu * dudx + dPdv * dvdx; 00075 * dP.dy = dPdu * dudy + dPdv * dvdy; */ 00076 00077 float det = (dPdu.x*dPdv.y - dPdv.x*dPdu.y); 00078 00079 if(det != 0.0f) 00080 det = 1.0f/det; 00081 00082 du->dx = (dP.dx.x*dPdv.y - dP.dx.y*dPdv.x)*det; 00083 dv->dx = (dP.dx.y*dPdu.x - dP.dx.x*dPdu.y)*det; 00084 00085 du->dy = (dP.dy.x*dPdv.y - dP.dy.y*dPdv.x)*det; 00086 dv->dy = (dP.dy.y*dPdu.x - dP.dy.x*dPdu.y)*det; 00087 } 00088 00089 CCL_NAMESPACE_END 00090