Blender V2.61 - r43446
|
00001 00004 // MersenneTwister.h 00005 // Mersenne Twister random number generator -- a C++ class MTRand 00006 // Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus 00007 // Richard J. Wagner v1.0 15 May 2003 rjwagner@writeme.com 00008 00009 // The Mersenne Twister is an algorithm for generating random numbers. It 00010 // was designed with consideration of the flaws in various other generators. 00011 // The period, 2^19937-1, and the order of equidistribution, 623 dimensions, 00012 // are far greater. The generator is also fast; it avoids multiplication and 00013 // division, and it benefits from caches and pipelines. For more information 00014 // see the inventors' web page at http://www.math.keio.ac.jp/~matumoto/emt.html 00015 00016 // Reference 00017 // M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally 00018 // Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on 00019 // Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30. 00020 00021 // Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, 00022 // Copyright (C) 2000 - 2003, Richard J. Wagner 00023 // All rights reserved. 00024 // 00025 // Redistribution and use in source and binary forms, with or without 00026 // modification, are permitted provided that the following conditions 00027 // are met: 00028 // 00029 // 1. Redistributions of source code must retain the above copyright 00030 // notice, this list of conditions and the following disclaimer. 00031 // 00032 // 2. Redistributions in binary form must reproduce the above copyright 00033 // notice, this list of conditions and the following disclaimer in the 00034 // documentation and/or other materials provided with the distribution. 00035 // 00036 // 3. The names of its contributors may not be used to endorse or promote 00037 // products derived from this software without specific prior written 00038 // permission. 00039 // 00040 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00041 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00042 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 00043 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 00044 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 00045 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 00046 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 00047 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 00048 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 00049 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 00050 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 00051 00052 // The original code included the following notice: 00053 // 00054 // When you use this, send an email to: matumoto@math.keio.ac.jp 00055 // with an appropriate reference to your work. 00056 // 00057 // It would be nice to CC: rjwagner@writeme.com and Cokus@math.washington.edu 00058 // when you write. 00059 00060 #ifndef MERSENNETWISTER_H 00061 #define MERSENNETWISTER_H 00062 00063 // Not thread safe (unless auto-initialization is avoided and each thread has 00064 // its own MTRand object) 00065 00066 #include <iostream> 00067 #include <limits.h> 00068 #include <stdio.h> 00069 #include <time.h> 00070 #include <math.h> 00071 00072 class MTRand { 00073 // Data 00074 public: 00075 typedef unsigned long uint32; // unsigned integer type, at least 32 bits 00076 00077 enum { N = 624 }; // length of state vector 00078 enum { SAVE = N + 1 }; // length of array for save() 00079 00080 protected: 00081 enum { M = 397 }; // period parameter 00082 00083 uint32 state[N]; // internal state 00084 uint32 *pNext; // next value to get from state 00085 int left; // number of values left before reload needed 00086 00087 00088 //Methods 00089 public: 00090 MTRand( const uint32& oneSeed ); // initialize with a simple uint32 00091 MTRand( uint32 *const bigSeed, uint32 const seedLength = N ); // or an array 00092 MTRand(); // auto-initialize with /dev/urandom or time() and clock() 00093 00094 // Do NOT use for CRYPTOGRAPHY without securely hashing several returned 00095 // values together, otherwise the generator state can be learned after 00096 // reading 624 consecutive values. 00097 00098 // Access to 32-bit random numbers 00099 double rand(); // real number in [0,1] 00100 double rand( const double& n ); // real number in [0,n] 00101 double randExc(); // real number in [0,1) 00102 double randExc( const double& n ); // real number in [0,n) 00103 double randDblExc(); // real number in (0,1) 00104 double randDblExc( const double& n ); // real number in (0,n) 00105 uint32 randInt(); // integer in [0,2^32-1] 00106 uint32 randInt( const uint32& n ); // integer in [0,n] for n < 2^32 00107 double operator()() { return rand(); } // same as rand() 00108 00109 // Access to 53-bit random numbers (capacity of IEEE double precision) 00110 double rand53(); // real number in [0,1) 00111 00112 // Access to nonuniform random number distributions 00113 double randNorm( const double& mean = 0.0, const double& variance = 1.0 ); 00114 00115 // Re-seeding functions with same behavior as initializers 00116 void seed( const uint32 oneSeed ); 00117 void seed( uint32 *const bigSeed, const uint32 seedLength = N ); 00118 void seed(); 00119 00120 // Saving and loading generator state 00121 void save( uint32* saveArray ) const; // to array of size SAVE 00122 void load( uint32 *const loadArray ); // from such array 00123 friend std::ostream& operator<<( std::ostream& os, const MTRand& mtrand ); 00124 friend std::istream& operator>>( std::istream& is, MTRand& mtrand ); 00125 00126 protected: 00127 void initialize( const uint32 oneSeed ); 00128 void reload(); 00129 uint32 hiBit( const uint32& u ) const { return u & 0x80000000UL; } 00130 uint32 loBit( const uint32& u ) const { return u & 0x00000001UL; } 00131 uint32 loBits( const uint32& u ) const { return u & 0x7fffffffUL; } 00132 uint32 mixBits( const uint32& u, const uint32& v ) const 00133 { return hiBit(u) | loBits(v); } 00134 uint32 twist( const uint32& m, const uint32& s0, const uint32& s1 ) const 00135 { return m ^ (mixBits(s0,s1)>>1) ^ ((~loBit(s1) + 1) & 0x9908b0dfUL); } 00136 static uint32 hash( time_t t, clock_t c ); 00137 }; 00138 00139 00140 inline MTRand::MTRand( const uint32& oneSeed ) 00141 { seed(oneSeed); } 00142 00143 inline MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength ) 00144 { seed(bigSeed,seedLength); } 00145 00146 inline MTRand::MTRand() 00147 { seed(); } 00148 00149 inline double MTRand::rand() 00150 { return double(randInt()) * (1.0/4294967295.0); } 00151 00152 inline double MTRand::rand( const double& n ) 00153 { return rand() * n; } 00154 00155 inline double MTRand::randExc() 00156 { return double(randInt()) * (1.0/4294967296.0); } 00157 00158 inline double MTRand::randExc( const double& n ) 00159 { return randExc() * n; } 00160 00161 inline double MTRand::randDblExc() 00162 { return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); } 00163 00164 inline double MTRand::randDblExc( const double& n ) 00165 { return randDblExc() * n; } 00166 00167 inline double MTRand::rand53() 00168 { 00169 uint32 a = randInt() >> 5, b = randInt() >> 6; 00170 return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0); // by Isaku Wada 00171 } 00172 00173 inline double MTRand::randNorm( const double& mean, const double& variance ) 00174 { 00175 // Return a real number from a normal (Gaussian) distribution with given 00176 // mean and variance by Box-Muller method 00177 double r = sqrt( -2.0 * log( 1.0-randDblExc()) ) * variance; 00178 double phi = 2.0 * 3.14159265358979323846264338328 * randExc(); 00179 return mean + r * cos(phi); 00180 } 00181 00182 inline MTRand::uint32 MTRand::randInt() 00183 { 00184 // Pull a 32-bit integer from the generator state 00185 // Every other access function simply transforms the numbers extracted here 00186 00187 if( left == 0 ) reload(); 00188 --left; 00189 00190 register uint32 s1; 00191 s1 = *pNext++; 00192 s1 ^= (s1 >> 11); 00193 s1 ^= (s1 << 7) & 0x9d2c5680UL; 00194 s1 ^= (s1 << 15) & 0xefc60000UL; 00195 return ( s1 ^ (s1 >> 18) ); 00196 } 00197 00198 inline MTRand::uint32 MTRand::randInt( const uint32& n ) 00199 { 00200 // Find which bits are used in n 00201 // Optimized by Magnus Jonsson (magnus@smartelectronix.com) 00202 uint32 used = n; 00203 used |= used >> 1; 00204 used |= used >> 2; 00205 used |= used >> 4; 00206 used |= used >> 8; 00207 used |= used >> 16; 00208 00209 // Draw numbers until one is found in [0,n] 00210 uint32 i; 00211 do 00212 i = randInt() & used; // toss unused bits to shorten search 00213 while( i > n ); 00214 return i; 00215 } 00216 00217 00218 inline void MTRand::seed( const uint32 oneSeed ) 00219 { 00220 // Seed the generator with a simple uint32 00221 initialize(oneSeed); 00222 reload(); 00223 } 00224 00225 00226 inline void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength ) 00227 { 00228 // Seed the generator with an array of uint32's 00229 // There are 2^19937-1 possible initial states. This function allows 00230 // all of those to be accessed by providing at least 19937 bits (with a 00231 // default seed length of N = 624 uint32's). Any bits above the lower 32 00232 // in each element are discarded. 00233 // Just call seed() if you want to get array from /dev/urandom 00234 initialize(19650218UL); 00235 register int i = 1; 00236 register uint32 j = 0; 00237 register int k = ( N > seedLength ? N : seedLength ); 00238 for( ; k; --k ) 00239 { 00240 state[i] = 00241 state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL ); 00242 state[i] += ( bigSeed[j] & 0xffffffffUL ) + j; 00243 state[i] &= 0xffffffffUL; 00244 ++i; ++j; 00245 if( i >= N ) { state[0] = state[N-1]; i = 1; } 00246 if( j >= seedLength ) j = 0; 00247 } 00248 for( k = N - 1; k; --k ) 00249 { 00250 state[i] = 00251 state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL ); 00252 state[i] -= i; 00253 state[i] &= 0xffffffffUL; 00254 ++i; 00255 if( i >= N ) { state[0] = state[N-1]; i = 1; } 00256 } 00257 state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array 00258 reload(); 00259 } 00260 00261 00262 inline void MTRand::seed() 00263 { 00264 // seed deterministically to produce reproducible runs 00265 seed(123456); 00266 00267 /* 00268 // Seed the generator with an array from /dev/urandom if available 00269 // Otherwise use a hash of time() and clock() values 00270 00271 // First try getting an array from /dev/urandom 00272 FILE* urandom = fopen( "/dev/urandom", "rb" ); 00273 if( urandom ) 00274 { 00275 uint32 bigSeed[N]; 00276 register uint32 *s = bigSeed; 00277 register int i = N; 00278 register bool success = true; 00279 while( success && i-- ) 00280 success = fread( s++, sizeof(uint32), 1, urandom ); 00281 fclose(urandom); 00282 if( success ) { seed( bigSeed, N ); return; } 00283 } 00284 00285 // Was not successful, so use time() and clock() instead 00286 seed( hash( time(NULL), clock() ) ); 00287 */ 00288 } 00289 00290 00291 inline void MTRand::initialize( const uint32 seed ) 00292 { 00293 // Initialize generator state with seed 00294 // See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier. 00295 // In previous versions, most significant bits (MSBs) of the seed affect 00296 // only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto. 00297 register uint32 *s = state; 00298 register uint32 *r = state; 00299 register int i = 1; 00300 *s++ = seed & 0xffffffffUL; 00301 for( ; i < N; ++i ) 00302 { 00303 *s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL; 00304 r++; 00305 } 00306 } 00307 00308 00309 inline void MTRand::reload() 00310 { 00311 // Generate N new values in state 00312 // Made clearer and faster by Matthew Bellew (matthew.bellew@home.com) 00313 register uint32 *p = state; 00314 register int i; 00315 for( i = N - M; i--; ++p ) 00316 *p = twist( p[M], p[0], p[1] ); 00317 for( i = M; --i; ++p ) 00318 *p = twist( p[M-N], p[0], p[1] ); 00319 *p = twist( p[M-N], p[0], state[0] ); 00320 00321 left = N, pNext = state; 00322 } 00323 00324 00325 inline MTRand::uint32 MTRand::hash( time_t t, clock_t c ) 00326 { 00327 // Get a uint32 from t and c 00328 // Better than uint32(x) in case x is floating point in [0,1] 00329 // Based on code by Lawrence Kirby (fred@genesis.demon.co.uk) 00330 00331 static uint32 differ = 0; // guarantee time-based seeds will change 00332 00333 uint32 h1 = 0; 00334 unsigned char *p = (unsigned char *) &t; 00335 for( size_t i = 0; i < sizeof(t); ++i ) 00336 { 00337 h1 *= UCHAR_MAX + 2U; 00338 h1 += p[i]; 00339 } 00340 uint32 h2 = 0; 00341 p = (unsigned char *) &c; 00342 for( size_t j = 0; j < sizeof(c); ++j ) 00343 { 00344 h2 *= UCHAR_MAX + 2U; 00345 h2 += p[j]; 00346 } 00347 return ( h1 + differ++ ) ^ h2; 00348 } 00349 00350 00351 inline void MTRand::save( uint32* saveArray ) const 00352 { 00353 register uint32 *sa = saveArray; 00354 register const uint32 *s = state; 00355 register int i = N; 00356 for( ; i--; *sa++ = *s++ ) {} 00357 *sa = left; 00358 } 00359 00360 00361 inline void MTRand::load( uint32 *const loadArray ) 00362 { 00363 register uint32 *s = state; 00364 register uint32 *la = loadArray; 00365 register int i = N; 00366 for( ; i--; *s++ = *la++ ) {} 00367 left = *la; 00368 pNext = &state[N-left]; 00369 } 00370 00371 00372 inline std::ostream& operator<<( std::ostream& os, const MTRand& mtrand ) 00373 { 00374 register const MTRand::uint32 *s = mtrand.state; 00375 register int i = mtrand.N; 00376 for( ; i--; os << *s++ << "\t" ) {} 00377 return os << mtrand.left; 00378 } 00379 00380 00381 inline std::istream& operator>>( std::istream& is, MTRand& mtrand ) 00382 { 00383 register MTRand::uint32 *s = mtrand.state; 00384 register int i = mtrand.N; 00385 for( ; i--; is >> *s++ ) {} 00386 is >> mtrand.left; 00387 mtrand.pNext = &mtrand.state[mtrand.N-mtrand.left]; 00388 return is; 00389 } 00390 00391 #endif // MERSENNETWISTER_H 00392 00393 // Change log: 00394 // 00395 // v0.1 - First release on 15 May 2000 00396 // - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus 00397 // - Translated from C to C++ 00398 // - Made completely ANSI compliant 00399 // - Designed convenient interface for initialization, seeding, and 00400 // obtaining numbers in default or user-defined ranges 00401 // - Added automatic seeding from /dev/urandom or time() and clock() 00402 // - Provided functions for saving and loading generator state 00403 // 00404 // v0.2 - Fixed bug which reloaded generator one step too late 00405 // 00406 // v0.3 - Switched to clearer, faster reload() code from Matthew Bellew 00407 // 00408 // v0.4 - Removed trailing newline in saved generator format to be consistent 00409 // with output format of built-in types 00410 // 00411 // v0.5 - Improved portability by replacing static const int's with enum's and 00412 // clarifying return values in seed(); suggested by Eric Heimburg 00413 // - Removed MAXINT constant; use 0xffffffffUL instead 00414 // 00415 // v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits 00416 // - Changed integer [0,n] generator to give better uniformity 00417 // 00418 // v0.7 - Fixed operator precedence ambiguity in reload() 00419 // - Added access for real numbers in (0,1) and (0,n) 00420 // 00421 // v0.8 - Included time.h header to properly support time_t and clock_t 00422 // 00423 // v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto 00424 // - Allowed for seeding with arrays of any length 00425 // - Added access for real numbers in [0,1) with 53-bit resolution 00426 // - Added access for real numbers from normal (Gaussian) distributions 00427 // - Increased overall speed by optimizing twist() 00428 // - Doubled speed of integer [0,n] generation 00429 // - Fixed out-of-range number generation on 64-bit machines 00430 // - Improved portability by substituting literal constants for long enum's 00431 // - Changed license from GNU LGPL to BSD 00432