Blender V2.61 - r43446
|
00001 /* 00002 * ***** BEGIN GPL LICENSE BLOCK ***** 00003 * 00004 * This program is free software; you can redistribute it and/or 00005 * modify it under the terms of the GNU General Public License 00006 * as published by the Free Software Foundation; either version 2 00007 * of the License, or (at your option) any later version. 00008 * 00009 * This program is distributed in the hope that it will be useful, 00010 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00011 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00012 * GNU General Public License for more details. 00013 * 00014 * You should have received a copy of the GNU General Public License 00015 * along with this program; if not, write to the Free Software Foundation, 00016 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 00017 * 00018 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV. 00019 * All rights reserved. 00020 * 00021 * The Original Code is: all of this file. 00022 * 00023 * Contributor(s): none yet. 00024 * 00025 * ***** END GPL LICENSE BLOCK ***** 00026 */ 00027 00033 #include "RAS_TexMatrix.h" 00034 00035 void RAS_CalcTexMatrix(RAS_TexVert p[3],MT_Point3& origin,MT_Vector3& udir,MT_Vector3& vdir) 00036 { 00037 // precondition: 3 vertices are non-colinear 00038 00039 MT_Vector3 vec1 = p[1].xyz()-p[0].xyz(); 00040 MT_Vector3 vec2 = p[2].xyz()-p[0].xyz(); 00041 MT_Vector3 normal = vec1.cross(vec2); 00042 normal.normalize(); 00043 00044 // determine which coordinate we drop, ie. max coordinate in the normal 00045 00046 00047 int ZCOORD = normal.closestAxis(); 00048 int XCOORD = (ZCOORD+1)%3; 00049 int YCOORD = (ZCOORD+2)%3; 00050 00051 // ax+by+cz+d=0 00052 MT_Scalar d = -p[0].xyz().dot(normal); 00053 00054 00055 MT_Matrix3x3 mat3( p[0].getUV1()[0],p[0].getUV1()[1], 1, 00056 p[1].getUV1()[0],p[1].getUV1()[1], 1, 00057 p[2].getUV1()[0],p[2].getUV1()[1], 1); 00058 00059 00060 MT_Matrix3x3 mat3inv = mat3.inverse(); 00061 00062 MT_Vector3 p123x(p[0].xyz()[XCOORD],p[1].xyz()[XCOORD],p[2].xyz()[XCOORD]); 00063 MT_Vector3 resultx = mat3inv*p123x; 00064 MT_Vector3 p123y(p[0].xyz()[YCOORD],p[1].xyz()[YCOORD],p[2].xyz()[YCOORD]); 00065 MT_Vector3 resulty = mat3inv*p123y; 00066 00067 // normal[ZCOORD] is not zero, because it's chosen to be maximal (absolute), and normal has length 1, 00068 // so at least on of the coords is <> 0 00069 00070 //droppedvalue udir.dot(normal) =0 00071 MT_Scalar droppedu = -(resultx.x()*normal[XCOORD]+resulty.x()*normal[YCOORD])/normal[ZCOORD]; 00072 udir[XCOORD] = resultx.x(); 00073 udir[YCOORD] = resulty.x(); 00074 udir[ZCOORD] = droppedu; 00075 MT_Scalar droppedv = -(resultx.y()*normal[XCOORD]+resulty.y()*normal[YCOORD])/normal[ZCOORD]; 00076 vdir[XCOORD] = resultx.y(); 00077 vdir[YCOORD] = resulty.y(); 00078 vdir[ZCOORD] = droppedv; 00079 // droppedvalue b = -(ax+cz+d)/y; 00080 MT_Scalar droppedvalue = -((resultx.z()*normal[XCOORD] + resulty.z()*normal[YCOORD]+d))/normal[ZCOORD]; 00081 origin[XCOORD] = resultx.z(); 00082 origin[YCOORD] = resulty.z(); 00083 origin[ZCOORD] = droppedvalue; 00084 00085 00086 } 00087 00088 #ifdef _TEXOWNMAIN 00089 00090 int main() 00091 { 00092 00093 MT_Point2 puv0={0,0}; 00094 MT_Point3 pxyz0 (0,0,128); 00095 00096 MT_Scalar puv1[2]={1,0}; 00097 MT_Point3 pxyz1(128,0,128); 00098 00099 MT_Scalar puv2[2]={1,1}; 00100 MT_Point3 pxyz2(128,0,0); 00101 00102 RAS_TexVert p0(pxyz0,puv0); 00103 RAS_TexVert p1(pxyz1,puv1); 00104 RAS_TexVert p2(pxyz2,puv2); 00105 00106 RAS_TexVert vertices[3] = 00107 { 00108 p0, 00109 p1, 00110 p2 00111 }; 00112 00113 MT_Vector3 udir,vdir; 00114 MT_Point3 origin; 00115 CalcTexMatrix(vertices,origin,udir,vdir); 00116 00117 MT_Point3 testpoint(128,32,64); 00118 00119 MT_Scalar lenu = udir.length2(); 00120 MT_Scalar lenv = vdir.length2(); 00121 00122 MT_Scalar testu=((pxyz2-origin).dot(udir))/lenu; 00123 MT_Scalar testv=((pxyz2-origin).dot(vdir))/lenv; 00124 00125 00126 00127 00128 return 0; 00129 } 00130 00131 #endif // _TEXOWNMAIN